2024年1月31日发(作者:中考数学试卷2022宜宾)

/jojoke/archive/2007/12/17/

模运算 2009-7-16

很多地方用到模运算,这里说明模运算的一些规律,并加以证明。 后续会对这些理论实际的应用加以记录和说明。

1. 模运算是取余运算(记做 % 或者 mod),具有周期性的特点。 m%n的意思是n除m后的余数, 当m递增时m%n呈现周期性特点, 并且n越大,周期越长,周期等于n。

例如

0 % 20 = 0,1 % 20 = 1, 2 % 20 = 2, 3 % 20 = 3, ..., 19 % 20 = 19

20 % 20 = 0,21 % 20 = 1,22 % 20 = 2,23 % 20 = 3, ...,39 % 20 = 19

2. 如果 m % n = r,那么可以推出如下等式

m = k * n + r (k为大于等于0的整数, r <= m)

3. 同余式, 表示正整数a,b对n取模,它们的余数相同,记做 a ≡ b mod n或者a = b (mod n)。

根据2的等式可以推出 a = kn + b 或者 a - b = kn

证明: ∵ a = k1 * n + r1

b = k2 * n + r2

∴ a - b = (k1 - k2) * n + (r1 - r2)

a = k * n + (r1 - r2) + b

∵ a, b对n取模同余,r1 = r2

∴ a = k * n + b (k = k1 - k2)

4. 模运算规则, 模运算与基本四则运算有些相似,但是除法例外。其规则如下

(a + b) % n = (a % n + b % n) % n (1)

(a - b) % n = (a % n - b % n) % n (2)

(a * b) % n = (a % n) * (b % n) % n (3)

ab

% n = ((a % n)b) % n (4)

(《ACM》P237规则有错,已改之)

(1)式证明

∵ a = k1*n + r1

b = k2*n + r2

a % n = r1

b % n = r2

∴(a+b) % n = ((k1+k2)*n + (r1+r2)) % n = (r1+r2) % n = (a % n + b % n)% n

得证

(2)式证明同上

(3)式证明

a = k1*n + r1

b = k2*n + r2

(a*b) % n = (k1k2n2 + (k1r2+k2r1)n + r1r2) % n = r1r2 % n = (a %n)*(b %n ) % n{此处已作改正,原为:(a %n * b %n ) % n ,

但,(a %n)*(b %n ) % n不等于(a %n * b %n ) % n 。另需注意:“*、/、div 、mod”为同等级运算}

(4)式证明

设 a % n = r

ab

%n= (a * a * a * a…*a) %n = (a %n * a %n * a %n * … * a %n) %n = rb % n = ((a % n)

b) % n

模运算看起来不是很直观,但是可以用来推导出一些有用的东西。 例如(4)式可以用来降幂运算,例如计算6265 % 133,直接计算的话需要算出6265

利用(4)式可以进行降幂运算。

6265 % 133

= 62 * 6264 % 133

= 62 * (622)32 % 133

= 62 * 384432 % 133

= 62 * (3844 % 133)32 % 133

= 62 * 12032 % 133

= 62 * 3616 % 133

= 62 * 998 % 133

= 62 * 924 % 133

= 62 * 852 % 133

= 62 * 43 % 133

= 2666 % 133

= 6

/juliet2366/blog/item/

关于负号取余:

『错:这是异号求余的规则:A%B=C,则C的值为:|A|%|B|的结果,让这个结果与A同号,然后在和B相加。比如:

|-15|%|4|=3,然后-3+4=1

如果是15%(-4),则结果为 3+(-4)=-1

注意一定是两数异号时才是这种规则,同号时跟一般的算法相同』

正确的见:IB_12 《Pascal语言 小学版(北京理工大学)》

/chackerempire/

模运算在数论和程序设计中都有着广泛的应用,从奇偶数的判别到素数的判别,从模幂运算到最大公约数的求法,从孙子问题到凯撒密码问题,无不充斥着模运算的身影。虽然很多数论教材上对模运算都有一定的介绍,但多数都是以纯理论为主,对于模运算在程序设计中的应用涉及不多。本文以c++语言为载体,对基本的模运算应用进行了分析和程序设计,以理论和实际相结合的方法向大家介绍模运算的基本应用。。

一 基本理论:

基本概念:

给定一个正整数p,任意一个整数n,一定存在等式 n = kp + r ;

其中k、r是整数,且 0 ≤ r < p,称呼k为n除以p的商,r为n除以p的余数。

对于正整数p和整数a,b,定义如下运算:

取模运算:a % p(或a mod p),表示a除以p的余数。

模p加法:(a + b) % p ,其结果是a+b算术和除以p的余数,也就是说,(a+b) = kp +r,则(a + b) % p = r。

模p减法:(a-b) % p ,其结果是a-b算术差除以p的余数。

模p乘法:(a * b) % p,其结果是 a * b算术乘法除以p的余数。

说明:

1. 同余式:正整数a,b对p取模,它们的余数相同,记做 a ≡ b % p或者a ≡ b (mod p)。

2. n % p得到结果的正负由被除数n决定,与p无关。例如:7%4 = 3, -7%4 = -3, 7%-4 = 3,

基本性质:

(1)若p|(a-b),则a≡b (% p)。例如 11 ≡ 4 (% 7), 18 ≡ 4(% 7)

(2)(a % p)=(b % p)意味a≡b (% p)

(3)对称性:a≡b (% p)等价于b≡a (% p)

(4)传递性:若a≡b (% p)且b≡c (% p) ,则a≡c (% p)

运算规则:

模运算与基本四则运算有些相似,但是除法例外。其规则如下:

(a + b) % p = (a % p + b % p) % p (1)

(a - b) % p = (a % p - b % p) % p (2)

(a * b) % p = (a % p * b % p) % p (3)

ab % p = ((a % p)b) % p (4)

。 -7%-4 = -3

结合率: ((a+b) % p + c) % p = (a + (b+c) % p) % p (5)

((a*b) % p * c)% p = (a * (b*c) % p) % p (6)

交换率: (a + b) % p = (b+a) % p (7)

(a * b) % p = (b * a) % p (8)

分配率: ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p (9)

重要定理:若a≡b (% p),则对于任意的c,都有(a + c) ≡ (b + c) (%p);(10)

若a≡b (% p),则对于任意的c,都有(a * c) ≡ (b * c) (%p);(11)

若a≡b (% p),c≡d (% p),则 (a + c) ≡ (b + d) (%p),(a - c) ≡ (b - d) (%p),

(a * c) ≡ (b * d) (%p),(a / c) ≡ (b / d) (%p); (12)

若a≡b (% p),则对于任意的c,都有ac≡ bc

(%p); (13)

二 基本应用:

1.判别奇偶数

奇偶数的判别是模运算最基本的应用,也非常简单。易知一个整数n对2取模,如果余数为0,则表示n为偶数,否则n为奇数。

C++实现功能函数:

/*

函数名:IsEven

函数功能:判别整数n的奇偶性。能被2整除为偶数,否则为奇数

输入值:int n,整数n

返回值:bool,若整数n是偶数,返回true,否则返回false

*/

bool IsEven(int n)

{

return (n % 2 == 0);

}

2.判别素数

一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。

判断某个自然数是否是素数最常用的方法就是试除法:用比该自然数的平方根小的正整数去除这个自然数,若该自然数能被整除,则说明其非素数。

C++实现功能函数:

/*

函数名:IsPrime

函数功能:判别自然数n是否为素数。

输入值:int n,自然数n

返回值:bool,若自然数n是素数,返回true,否则返回false

*/

bool IsPrime(unsigned int n)

{

unsigned maxFactor = sqrt(n); //n的最大因子

for (unsigned int i=2; i<=maxFactor; i++)

{

if (n % i == 0) //n能被i整除,则说明n非素数

{

return false;

}

}

return true;

}

3. 最大公约数

求最大公约数最常见的方法是欧几里德算法(又称辗转相除法),其计算原理依赖于定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b

假设d是a,b的一个公约数,则有d|a, d|b,而r = a - kb,因此d|r

因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则d | b , d |r ,但是a = kb +r

因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证。

C++实现功能函数:

/*

函数功能:利用欧几里德算法,采用递归方式,求两个自然数的最大公约数

函数名:Gcd

输入值:unsigned int a,自然数a

unsigned int b,自然数b

返回值:unsigned int,两个自然数的最大公约数

*/

unsigned int Gcd(unsigned int a, unsigned int b)

{

if (b == 0)

return a;

return Gcd(b, a % b);

}

/*

函数功能:利用欧几里德算法,采用迭代方式,求两个自然数的最大公约数输入值:unsigned int a,自然数a

unsigned int b,自然数b

返回值:unsigned int,两个自然数的最大公约数

*/

unsigned int Gcd(unsigned int a, unsigned int b)

Gcd 函数名:

{

unsigned int temp;

while (b != 0)

{

temp = a % b;

a = b;

b = temp;

}

return a;

}

4.模幂运算

利用模运算的运算规则,我们可以使某些计算得到简化。例如,我们想知道3333^5555的末位是什么。很明显不可能直接把3333^5555的结果计算出来,那样太大了。但我们想要确定的是3333^5555(%10),所以问题就简化了。

根据运算规则(4)a % p = ((a % p)) % p ,我们知道3333^5555(%10)= 3^5555(%10)。由于3^4 = 81,所以3^4(%10)=

1。

根据运算规则(3) (a * b) % p = (a % p * b % p) % p ,由于5555 = 4 * 1388 + 3,我们得到3^5555(%10)=(3^(4*1388) * 3^3)(%10)=((3^(4*1388)(%10)* 3^3(%10))(%10)

bb

=(1 * 7)(%10)= 7。

计算完毕。

利用这些规则我们可以有效地计算X^N(% P)。简单的算法是将result初始化为1,然后重复将result乘以X,每次乘法之后应用%运算符(这样使得result的值变小,以免溢出),执行N次相乘后,result就是我们要找的答案。

这样对于较小的N值来说,实现是合理的,但是当N的值很大时,需要计算很长时间,是不切实际的。下面的结论可以得到一种更好的算法。

如果N是偶数,那么X^N =(X*X)^[N/2];

如果N是奇数,那么X^N = X*X^(N-1) = X *(X*X)^[N/2];

其中[N]是指小于或等于N的最大整数。

C++实现功能函数:

/*

函数功能:利用模运算规则,采用递归方式,计算X^N(% P)

函数名:PowerMod

输入值:unsigned int x,底数x

unsigned int n,指数n

unsigned int p,模p

返回值:unsigned int,X^N(% P)的结果

*/

unsigned int PowerMod(unsigned int x, unsigned int n, unsigned int p)

{

if (n == 0)

{

return 1;

}

unsigned int temp = PowerMod((x * x)%p, n/2, p); //递归计算(X*X)^[N/2]

if ((n & 1) != 0) //判断n的奇偶性

{

temp = (temp * x) % p;

}

return temp;

}

5.《孙子问题(中国剩余定理)》

在我国古代算书《孙子算经》中有这样一个问题:

“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”意思是,“一个数除以3余2,除以5余3,除以7余2.求适合这个条件的最小数。”

这个问题称为“孙子问题”.关于孙子问题的一般解法,国际上称为“中国剩余定理”.

我国古代学者早就研究过这个问题。例如我国明朝数学家程大位在他著的《算法统宗》(1593年)中就用四句很通俗的口诀暗示了此题的解法:

三人同行七十稀,五树梅花甘一枝,七子团圆正半月,除百零五便得知。

\"正半月\"暗指15。\"除百零五\"的原意是,当所得的数比105大时,就105、105地往下减,使之小于105;这相当于用105去除,求出余数。

这四句口诀暗示的意思是:当除数分别是3、5、7时,用70乘以用3除的余数,用21乘以用5除的余数,用15乘以用7除的余数,然后把这三个乘积相加。加得的结果如果比105大,就除以105,所得的余数就是满足题目要求的最小正整数解。

根据剩余定理,我把此种解法推广到有n(n为自然数)个除数对应n个余数,求最小被除数的情况。输入n个除数(除数不能互相整除)和对应的余数,计算机将输出最小被除数。

C++实现功能函数:

/*

函数名:ResidueTheorem

函数功能:运用剩余定理,解决推广了的孙子问题。通过给定n个除数(除数不能互相整除)和对应的余数,返回最小被除数

输入值:unsigned int devisor[],存储了n个除数的数组

unsigned int remainder[],存储了n个余数的数组

int length,数组的长度

返回值:unsigned int, 最小被除数

*/

unsigned int ResidueTheorem(const unsigned int devisor[], const unsigned int remainder[], int length)

{

unsigned int product = 1; //所有除数之乘积

for (int i=0; i

{

product *= devisor[i];

}

//公倍数数组,表示除该元素(除数)之外其他除数的公倍数

unsigned int *commonMultiple = new unsigned int(length);

for (int i=0; i

{

commonMultiple[i] = product / devisor[i];

}

unsigned int dividend = 0; //被除数,就是函数要返回的值

for (int i=0; i

{

unsigned int tempMul = commonMultiple[i];

//按照剩余理论计算合适的公倍数,使得tempMul % devisor[i] == 1

while (tempMul % devisor[i] != 1)

{

tempMul += commonMultiple[i];

}

dividend += tempMul * remainder[i]; //用本除数得到的余数乘以其他除数的公倍数

}

delete []commonMultiple;

return (dividend % product); //返回最小被除数

}

6. 凯撒密码

凯撒密码(caeser)是罗马扩张时期朱利斯o凯撒(Julius Caesar)创造的,用于加密通过信使传递的作战命令。

它将字母表中的字母移动一定位置而实现加密。注意26个字母循环使用,z的后面可以堪称是a。

例如,当密匙为k = 3,即向后移动3位时,若明文为”How are you!”,则密文为”Krz duh btx!”。

凯撒密码的加密算法极其简单。其加密过程如下:

在这里,我们做此约定:明文记为m,密文记为c,加密变换记为E(key1,m)(其中key1为密钥),

解密变换记为D(key2,m)(key2为解密密钥)(在这里key1=key2,不妨记为key)。

凯撒密码的加密过程可记为如下一个变换:c≡m+key (mod n) (其中n为基本字符个数)

同样,解密过程可表示为:m≡c+key (mod n) (其中n为基本字符个数)

C++实现功能函数:

/*

函数功能:使用凯撒密码原理,对明文进行加密,返回密文 函数名:Encrypt

输入值:const char proclaimedInWriting[],存储了明文的字符串

char cryptograph[],用来存储密文的字符串

int keyey,加密密匙,正数表示后移,负数表示前移

返回值:无返回值,但是要将新的密文字符串返回

*/

void Encrypt(const char proclaimedInWriting[], char cryptograph[], int key)

{

const int NUM = 26; //字母个数

int len = strlen(proclaimedInWriting);

for (int i=0; i

{

if (proclaimedInWriting[i] >= \'a\' && proclaimedInWriting[i] <= \'z\')

{//明码是大写字母,则密码也为大写字母

cryptograph[i] = (proclaimedInWriting[i] - \'a\' + key) % NUM + \'a\';

}

else if (proclaimedInWriting[i] >= \'A\' && proclaimedInWriting[i] <= \'Z\')

{//明码是小写字母,则密码也为小写字母

cryptograph[i] = (proclaimedInWriting[i] - \'A\' + key) % NUM + \'A\';

}

else

{//明码不是字母,则密码与明码相同

cryptograph[i] = proclaimedInWriting[i];

}

}

cryptograph[len] = \'0\';

}

/*

函数功能:使用凯撒密码原理,对密文进行解密,返回明文

输入值:char proclaimedInWriting[],用来存储明文的字符串

Decode 函数名:

const char cryptograph[],存储了密文的字符串

int keyey,解密密匙,正数表示前移,负数表示后移(与加密相反)

返回值:无返回值,但是要将新的明文字符串返回

*/

void Decode(const char cryptograph[], char proclaimedInWriting[], int key)

{

const int NUM = 26; //字母个数

int len = strlen(cryptograph);

for (int i=0; i

{

if (cryptograph[i] >= \'a\' && cryptograph[i] <= \'z\')

{//密码是大写字母,则明码也为大写字母,为防止出现负数,转换时要加个NUM

proclaimedInWriting[i] = (cryptograph[i] - \'a\' - key + NUM) % NUM + \'a\';

}

else if (cryptograph[i] >= \'A\' && cryptograph[i] <= \'Z\')

{//密码是小写字母,则明码也为小写字母

proclaimedInWriting[i] = (cryptograph[i] - \'A\' - key + NUM) % NUM + \'A\';

}

else

{//密码不是字母,则明码与明密相同

proclaimedInWriting[i] = cryptograph[i];

}

}

proclaimedInWriting[len] = \'0\';

}

模运算及其简单应用就先讲到这了,其实模运算在数学及计算机领域的应用非常广泛,我这这里搜集整理了一些最最基本的情形,希望能够起到一个抛砖引玉的作用,让更多的人关注模运算,并及其应用到更广阔的领域中。


更多推荐

运算,除数,应用,功能,基本,计算