2024年3月25日发(作者:中职单招2021数学试卷)

第5章 数据的频数分布

5.1 频数与频率

1.理解频率的概念,理解样本容量、

频数、频率之间的相互关系,会计算频率;

(重点,难点)

2.了解频数、频率的一些简单实际应

用.

一、情境导入

某医院2月份出生的20名新生婴儿的

体重如下(单位:kg):4.7、2.9、3.2、3.5、

3.6、4.8、4.3、3.6、3.8、3.4、3.4、3.5、2.8、

3.3、4.0、4.5、3.6、3.5、3.7、3.7.已知这一

组数的平均数为3.69,s

2

=0.2749,请说明

这组数据的平均数和方差能说明医院新生

婴儿体重在哪一个范围内人数最多,在哪一

个范围内人数最少?你能说出体重在

3.55~3.95kg这一范围内的婴儿数是多少

吗?用什么方法?

二、合作探究

探究点一:频数

将20个数据分成8个组,如下表,则

第6组的频数为( )

组号 1 2 3 4 5 6 7 8

方法总结:求频数时要明白各频数之和

为数据总数,列出相应方程求解即可.

探究点二:频率

“三年的初中学习生活快结束了,愿

中考将我送达另一个理想的彼岸”,这28

个字中,每个字的笔画数依次是3,6,8,7,

4,8,3,5,9,7,9,7,2,14,4,6,9,

7,9,6,5,1,3,11,13,8,8,8,其

中笔画数是9的字出现的频率是多少?

解析:首先确定笔画数为9的字的个数,

根据题意可得出总数为28,然后根据频率=

频数÷总数进行计算即可.

解:由题意得笔画数是9的字的频数为

4,∴笔画数是9的字出现的频率是4÷28=

1

.

7

方法总结:对频数及频率意义的考查的

题目,关键是掌握频率=频数÷总数.

探究点三:频数与频率的综合应用

【类型一】 频数、频率及数据总数间

频数 3 1 1 3 2 3 2

的计算

青云中学某次作文比赛后,王涛将所

有参赛的作文,按所得的“甲、乙、丙、丁”

A.2 B.3 C.4 D.5

成绩进行了分类统计,得甲、乙、丙、丁的

解析:根据总频数之和等于20,即20

频率依次为0.15、0.35、0.30、x,其中频率

为x的频数为20,求这次作文比赛中得甲、

-3-1-1-3-2-3-2=20-15=5,∴第

乙、丙的同学各有多少人?

6组的频数为5.故选D.

解析:先根据频率之和为1,求出x=

0.2;再根据频数为20,求出总人数,即可

求得甲、乙、丙的学生数.

解:∵0.15+0.35+0.3+x=1,∴x=0.2.

参赛总人数为

20

=100(人),∴得甲的人数

0.2

用总人数乘对应的频率即可.

解:(1)较好所占的比例是

126

,则本次

360

126

抽样共调查的学生数为70÷=200(名);

360

(2)非常好的频数是200×0.21=42,一

般的频数是200-42-70-36=52,较好的

7052

频率是=0.35,一般的频率是=0.26,

200200

不好的频率是

36

=0.18.故表中从左到右,

200

为100×0.15=15(人),得乙的人数为

100×0.35=35(人),得丙的人数为

100×0.30=30(人).

方法总结:各频数之和为数据总数,各

频率之和为1,频数=数据总数×频率.

【类型二】 频率、频数与扇形统计图

为培养学生良好学习习惯,某学校计

划举行一次“整理错题集”的展示活动,对

该校部分学生“整理错题集”的情况进行了

一次抽样调查,根据收集的数据绘制了不完

整的统计图表:

从上到下依次填42,0.35,52,0.26,0.18;

(3)该校学生整理错题集情况“非常

好”和“较好”的学生一共约有

1500×(0.21+0.35)=840(名).

方法总结:对于频数分布表与扇形统计

图相结合的题目,应充分分析表和图中数

据,根据他们的互补信息进行数据补充.

【类型三】 绘制频数分布表

某校为了了解八年级学生的数学作业

量情况,抽查了20名学生每天做数学作业

所花的时间,获得如下数据(单位:分钟):

25,21,23,25,27,29,25,28,30,29,

26,24,25,27,26,22,24,25,26,28.

按花20.5~22.5分钟为“快”,花22.5~

24.5分钟为“较快”,花24.5~26.5分钟为

“一般”,花26.5~28.5分钟为“较慢”,

花28.5~30.5分钟为“慢”,编制成频数分

布表(包括频数、频率).

解析:使用画“正”的方法记录各组的

数据个数得到频数,再用频数÷总数得到频

率.

解:频数分布表如下:

画记

频数

2

3

8

频率

0.1

0.15

0.4

整理情况

非常好

较好

一般

不好

频数

70

36

频率

0.21

请根据图表中提供的信息,解答下

列问题.

(1)本次抽样共调查了多少名学生?

(2)补全统计表中所缺的数据;

(3)该校有1500名学生,估计该校学生

整理错题集情况“非常好”和“较好”的

学生一共有多少名?

解析:(1)根据较好的部分所在扇形的圆

心角的度数即可求得其所占百分比,进而可

分 组

快(20.5~22.5)

频数

较快

求得总数;(2)根据频率=即可求解;(3)

(22.5~24.5)

总数

一般(24.5~26.5)

(26.5~28.5) 4

慢(28.5~30.5) 3

合 计 20 1

方法总结:(1)频数是该组数据范围内的

数据个数;(2)在计算频数时,可以使用画

“正”的方法记录该组的数据个数;(3)在计

算数据个数时注意不要漏数、错数,分清数

据应属于哪个组;(4)在计算完成后,将所有

分组的频数相加,频数相加之和应为总数;

(5)用频数÷总数,即是各组的频率,频率之

和为

0.2

0.15

1.

三、板书设计

1.频率=

频数

数据总数

2.频数=频率×数据总数

3数据总数=

频数

频率

频数和频率是统计中两个重要的数字特征,

它们反映了各个对象出现的频繁程度.在教

学中要注意引导学生明白:在收集到一些数

据后,一定要选择合理的方式表示所收集的

数据,会进行初步的数据分析.

较慢


更多推荐

频数,频率,数据,学生,总数,错题,作文,进行