2023年12月12日发(作者:儿童数学试卷搞笑视频)
新人教版小学五年级数学下册第二单元《因数和倍数》教材解读
一.教材说明:
本单元让学生在前面所学的整数知识基础上,进一步探索整数的性质。本单元涉及到的因数、倍数、质数、合数以及第四单元中的最大公因数、最小公倍数都属于初等数论的基本内容。数论是一个历史悠久的数学分支,它是研究整数的性质的一门学问,以严格、简洁、抽象著称。数学一直被认为是“科学的皇后”,而数论则更被誉为“数学的皇后”,可见数论在数学中的地位。本单元的知识作为数论知识的初步,一直是小学数学教材中的重要内容。通过这部分内容的学习,可以使学生获得一些有关整数的知识,另一方面,有助于发展他们的抽象思维。
二.教学内容
1.因数和倍数 2. 2、5、3的倍数的特征 3.质数和合数
三.教学目标
1.使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。
2.使学生通过自主探索,掌握2、5、3的倍数的特征。
3.逐步培养学生的数学抽象能力。
四.编排特点
1.精简概念,减轻学生记忆负担。(也是与旧教材的区别)
(1)不再出现“整除”概念,直接从乘法算式引出因数和倍数的概念。
(2)不再正式教学“分解质因数”,只作为阅读性材料进行介绍。
(3)公因数、最大公因数、公倍数、最小公倍数移至“分数的意义和性质”单元,作为约分和通分的知识基础,更突出其应用性。
2.注意体现数学的抽象性。
数论知识本身具有抽象性。学生到了高年级也应注意培养其抽象思维。
五.教学建议
1.加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。从因数和倍数的含义去理解其他的相关概念。 本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的公因数、公倍数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。
2.要注意培养学生的抽象思维能力。由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,如质数、合数等概念,很难从生活实际中引入。而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
3. 这部分内容可以用6课时进行教学。
六.具体编排及教学建议
1.因数和倍数
因数和倍数的概念:
过去:用b÷a=n表示b能被a整除,b是a的倍数,a是b的约数。
现在:用na=b直接引出因数和倍数的概念。
(1)用2×6=12给出因数和倍数的概念。
(2)用3×4=12进一步巩固上述概念。
(3)让学生利用因数和倍数的概念自主发现12的其他因数。
(4)可引导学生利用一般的乘法算式×=归纳出因数和倍数的概念。
(5)说明本单元的研究范围。
注意以下几点:
(1)虽然不出现“整除”一词,但本质上仍是以整除为基础,因此,乘法算式中的乘数和积都必须是整数。
(2)因数和倍数是一对相互依存的概念,不能单独存在。
(3)注意区分乘法各部分名称中的“因数”和本单元中的“因数”的联系和区别。
(4)注意区分“倍数”与前面学过的“倍”的联系与区别。 例1:一个数的因数的求法
(1)可用不同的方法求出18的因数(列出积是18的乘法算式或列出被除数是18的除法算式),但应引导学生有序思考。
(2)用集合圈表示因数,为后面求两个数的公因数作铺垫。
一个数的因数的特点:
(1)最大因数是其自身,最小因数是1。
(2)因数个数有限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
例2:一个数的倍数的求法
(1)求法:用该数乘任一非0自然数所得的积都是该数的倍数。
(2)用集合圈表示倍数,为后面求两个数的公倍数作铺垫。
做一做
与例2结合起来,提供了2、3、5的倍数,为后面探讨2、3、5倍数的特征做准备。
一个数的倍数的特点:
(1)最小倍数是其自身,没有最大的倍数。
(2)倍数个数无限。
(3)此结论通过例1和“做一做”中的特例通过不完全归纳法得出,体现了从具体到一般的思路。
关于练习二中一些习题的说明和教学建议。
第2题,让学生分别找出36和60的因数,在学生完成题目后,教师可以有意识地让学生观察一下有哪些数是这两个数共同的因数,这些共同因数中最大的是什么,为后面学习“公因数”和“最大公因数”做准备。
第3题,让学生分别找出8和9的倍数,在学生完成题目后,教师可以有意识地让学生观察一下有哪些数是这两个数共同的倍数,这些共同倍数中最小的是什么,为后面学习“公倍数”“最小公倍数”“互质的两个数的最小公倍数是它们的乘积”等知识做准备。
第5题,帮助学生辨析某些概念。如说因数和倍数时,必须说清楚谁是谁的因数(或倍数)。再如,任何一个非零自然数的倍数的个数都是无限的,任何非零自然数都有因数1,等等。 第6题,通过猜数游戏巩固因数和倍数的概念,第(1)题,使学生认识到,随着限制条件的增多,符合条件的数越来越少。实际上,题目中共有四个限制条件,先看42的因数有1、2、3、6、7、14、21、42,其中只有7、14、21、42是7的倍数,这四个数中只有14和42是2的倍数,其中只有42才是3的倍数,所以,符合条件的数只有42。第(2)、(3)题,都使学生进一步理解一个数的最大因数和最小倍数都是它本身。
第16页的思考题,是通过两个特殊的例子,引导学生通过不完全归纳,总结出以下的结论:如果两个数都是一个数的倍数,那么这两个数的和也是这个数的倍数。还可以引导学生用数学化的方式对这个结论加以证明:如果B是A的倍数,那么必然存在一个整数m,使B=Am,如果C也是A的倍数,那么必然存在一个整数n,使C=An,那么B+C=Am+An=A(m+n),因此,B+C也是A的倍数。这个结论还可以进一步扩展:如果有n个数都是一个数的倍数,那么这n个数的和也是这个数的倍数。
2. 因为2、5的倍数的特征在个位数上就体现出来了,而3的倍数涉及到各数位上的数字之和,较为复杂,因此后安排3的倍数的特征。本部分内容对于熟练掌握约分、通分、分数的四则运算有很重要的作用。
2.2、3、5的倍数的特征
2的倍数的特征
教学建议
教学时,可以先让学生观察情境图,并联想在生活中哪儿还见过双数、单数,如街道或胡同一边的门牌号是双数,另一边是单数。接下来,让学生思考:为什么这些数称为双数?它们和2有什么联系?(学生在生活中已经具备了“双”即为“2个”的经验。)引导学生列出它们与2的倍数关系,说明这些数都是2的倍数。也可以让学生联系前面学过的2的倍数的求法,说出若干个2的倍数。在此基础上,引导学生通过观察,发现这些数的个位上都是0、2、4、6、8,从而形成猜想:所有2的倍数的个位上都是0、2、4、6、8。因此,判断一个数是不是2的倍数,只要看这个数的个位上是什么数就可以了。接下来,可以让学生举出一些数(包括比较大的数,如1045、8394)进行验证。由于2的倍数的个数是无限的,无法一一验证,在这儿,只要学生通过观察有限个2的倍数的特征,总结出所有2的倍数的特征就可以了,不要求严格的数学证明(见参考资料)。
接下来,介绍偶数和奇数的概念。我们在这个单元中一般不考虑0,在这儿需要作一个特殊说明,因为0也是2的倍数,因此0也是偶数。学生掌握了偶数和奇数的定义后,教师可以给出一些数,让学生判断它们是奇数还是偶数,也可以让学生再举出一些偶数和奇数。在此基础上,可以引导学生将2的倍数的特征表示为“个位上是偶数的都是2的倍数”。
(1)从生活情境“双号”引入。
(2)观察2的倍数的个位数,总结出2的倍数的特征。 (3)介绍奇数和偶数的概念。
(4)可让学生随意找一些数进行验证,但不要求严格的证明。
5的倍数的特征
(1)编排方式与2的倍数的特征类似。
(2)可进一步总结既是2的倍数又是5的倍数的特征,即10的倍数的特征。
3的倍数的特征
教学时,要引导学生经历观察、猜测、验证的完整过程。由于学生在概括2和5的倍数的特征时,只注意到了个位数,因此,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征。但通过观察,发现这些数的个位上的数有的是3的倍数,有的不是,于是产生认知冲突。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上数的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想,可以补充一些其他的数,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。
为了使学生更好地掌握3的倍数的特征,进行课堂练习时,还可以把一些数各个数位上的数经过不同的排列,再让学生判断,以加深对“各位上数的和是3的倍数”的理解。如完成“做一做”第1题时,学生判断完45是3的倍数后,教师可以再让学生判断一下54是不是3的倍数。
完成“做一做”第2题时,要引导学生有序地思考问题。第18页的“做一做”已经有所铺垫,学生已经知道只有末尾是0的数才能同时是2和5的倍数,而此题中所求的数又是一个三位数,所以,就要从几百几十中找这样的数,这样,每增加一个条件,符合条件的数的范围就缩小一些,通过层层“筛选”,求出符合条件的数是120。
(1)强调自主探索,让学生经历观察――猜想――推翻猜想――再观察――再猜想――验证的过程。
(2)可任意选择一个数,用正面、反面的例子对结论进一步验证。
(3)也可对任一3的倍数的各位数调换位置,更深刻地理解3的倍数的特征。
关于练习三中一些习题的说明和教学建议。
第2题,是让学生寻找生活中的奇数和偶数,应鼓励学生尽量多地发现身边的数学信息,如住几号楼,公共汽车是几路的,全村有几户人家,全班有多少人,等等。有了这些数据后,还可以在后面的练习中进一步判断它们是不是2、5、3的倍数。
第5题,是一个解决实际问题的题目。由于妈妈买的是一些马蹄莲和郁金香,马蹄莲10元1枝,所以它的总价是10的倍数,也就是整十数,而郁金香是5元1枝,所以它的总价是5的倍数,个位上是0或5,两者合起来的总价一定是几十元或几十五元,因此,服务员找的钱数不对。
第7题是开放题,要运用3的倍数的特征来解决。如想“□7是3的倍数”,就要想“□+7是3的倍数”,□中符合条件的数有2、5、8。
第8题也是开放题,要找出一个偶数,同时又是3的倍数,可以先确定该数的个位上的数,再根据3的倍数的特征来确定其他位的数。而要找一个奇数,同时又是5的倍数,也是先确定个位上的数必须是5,其他数位上可以取任意数。
第10题,可以先把从4张卡片里取3张所能组成的所有三位数列出来:430、403、340、304,450、405、540、504,350、305、530、503,435、453、345、354、534、543。罗列的时候,要引导学生采用有序的思考方式,保证不重复、不遗漏。然后再分别看这些数属于下面的哪一类。也可以先根据下面各类数的特点确定范围,如这些数字能组成的偶数,个位数只能是0和4,那么相应的数就有430、340、350、530、450、540,304、504、354、534。再如,由于这4张卡片中的3个数相加之和是3的倍数的情况有4+5+0=9,4+3+5=12,因此能组成的3的倍数有450、405、540、504;345、354、435、453、534、543。教学时,还可以把本题进一步拓展,如让学生思考用这4张卡片能组成的3的倍数中,一位数有哪些,两位数、四位数呢?
第11*题,是让学生进一步探索偶数和奇数的性质。练习时,可以让学生结合具体的数来理解。
3.质数和合数
在数论中,有关质数和合数的理论一直吸引着数学家们不断探索。例如,我们已经知道质数的个数是无限的,但人们仍在不断地寻找更大的质数,1996年9月初美国的科学家找到了一个新的最大质数(21257787-1)。再比如,1742年,德国数学家哥德巴赫提出了著名的“哥德巴赫猜想”:任何大于2的偶数,都可以写成两个质数之和,这一数学王冠上的明珠至今仍吸引着无数人孜孜以求。因此,在质数和合数的世界里充满了神奇的数学魅力。
在小学阶段,只是让学生在因数、倍数的基础上初步掌握质数、合数的概念,为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。在本单元,要求学生能用自己的方法找出100以内的质数,并熟练判断20以内的数哪个是质数,哪个是合数。
教学时,可以先复习因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,可以怎样分类。学生通过自主探索,会自觉地把这些数分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。在分类的基础上,再引出质数、合数的概念,说明只有1和它本身两个因数的数叫质数,有两个以上因数的数叫合数,1既不是质数,也不是合数。学生掌握了质数和合数的概念以后,教师可以出示几个数,让学生判断是质数还是合数,也可以由学生自己分别写出几个质数和几个合数。
质数和合数的概念: (1)根据20以内各数的因数个数把数分成三类:1、质数、合数。
(2)可任出一个数,让学生根据概念判断其为质数还是合数。
例1:找100以内的质数
(1)方法多样。可以根据质数的概念逐个判断,也可用筛法。
(2)把握教学要求:知道100以内的质数,熟悉20以内的质数。 本例让学生运用质数的概念找出100以内的所有质数。学生通过此例可以学会找质数的一般方法“筛法”,即划掉每个质数的所有倍数(它本身除外),剩下的都是质数。由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。
分解质因数的内容虽然不作为正式教学内容,但作为一种重要的方法技能,教材还是把它安排在“你知道吗?”中进行介绍,供学生阅读参考。
教学时,尽量采取让学生自己完成任务的教学方式。学生在找100以内的质数时,所用的方法可能是多样化的。例如,有的学生是先找每个数分别有几个因数,然后再根据质数和合数的意义进行判断。还有的学生采用的是“排除法”,因为质数只有因数1和它本身,所以,每个质数后面该质数的所有倍数都是合数,如2是质数,但是2的倍数(2本身除外)如4,6,8,10,…都是合数,3是质数,它的倍数(3本身除外)如6,9,12,15,…也都是合数。因此,只要把所有质数后面的倍数都划去,剩下的就都是质数了。划完后,还可以让学生体会一下划到几的倍数就可以了。由于自然数是无限的,所以质数和合数也是无限的。本例中只要求学生列出100以内的质数表,这是因为较大的质数不常用。但20以内的质数用得较多,最好应提醒学生逐步记住。
到本节教材为止,已经出现了因数、倍数、奇数、偶数、质数、合数等概念,有些概念学生容易混淆,如学生往往把质数和奇数、合数和偶数混同起来,因此教学时应注意让学生辨析这些概念。例如,可让学生按照不同的标准对自然数进行分类,按是不是2的倍数可以把整数分成偶数和奇数两类,按约数的多少把非零自然数分成质数、合数和1三类。也可以结合学生自行整理的质数表,让学生观察和思考:是不是所有的质数都是奇数?引导学生举出反例,如2是质数,但它不是奇数;也不是所有的奇数都是质数,如9、35都是奇数,但都不是质数;也不是所有的偶数都是合数,如偶数2就不是合数。
关于练习四中一些习题的说明和教学建议。
第1题,主要是让学生对一些概念进一步加以区别。判断时,要引导学生说明理由或举出反例。如第(3)小题,使学生进一步记住1既不是质数,也不是合数。第(4)小题,因为偶数2是质数,它和其他质数的和都是奇数,因此,题中的说法不正确。
第3题,让学生根据条件求数,要求学生对20以内的质数比较熟悉。如第1小题,可以先通过“两个数的积是21”知道这两个数是21的一对因数,这样的因数只有3和7或1和21,而前者正好满足3+7=10且都是质数。再如第2小题,满足“两个质数之和是20”的有两对质数:3和17、7和13,而后者又同时满足7×13=91。
第4题,是带着练习2、5、3的倍数的特征。
第5题,是用游戏的形式引出“哥德巴赫猜想”,使学生通过举例的方式看到:大于2的偶数,可以表示为两个质数之和。但举例只能举出有限个,是不是所有大于2的偶数都满足这一结论呢?从而引起学生继续探求的兴趣,也很自然地引出下面的阅读材料。
更多推荐
学生,倍数,质数,概念,因数,合数,引导
发布评论