2023年12月17日发(作者:2021中考数学试卷西安)
数学手抄报资料(图片及内容)
数学故事:高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+ ..... +97+98+99+100 = ?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被
高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!
简介:数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。
数学手抄报资料:变幻莫测的“3”
数学手抄报资料:变幻莫测的“3”数学手抄报资料:变幻莫测的“3” 变幻莫测的 3
我们在三维空间里自由自在地生活,对于 3 一定应感受最深,认识最多了,从一开始数数,数2后就是3,但3对于2来说已不仅仅是 差一个数量级了,它的蕴意变化万千,给我们以神秘的、无穷的感受。
道生一,一生二,二生三,三生万物 ,道家一言道出了3的真谛,3为什么竟能衍生万物,这确是我们百思不能求解的问题。2确实不多,但加1成3便为多,三人为众,三木为森,三石为磊,三车轰隆有声,三日晶晶闪烁,三火焱焱燃烧。
物理学中的三棱镜可将太阳光折射出七色光芒;画家可将三种原色按比例掺配,画出 五彩缤纷 的图画;三个臭皮匠,就可以胜过诸葛亮;三人同行,必有我师;三人同心黄土变金。一个单位只要有三个党员,就可以组成一个党支部。可见3已是一个足够大的数字了,有了3就具备了足够的原料,奠定了扎实的基础。
三如果意味多的话,则一就意味少了,因此 对联常在上下联中分别嵌入三和一,使对联工整有趣,如 千程怀抱三杯酒,万里千山一水搂 , 三顾频频天下计,一番唔对古今情 。
在数学中,2和3的差距简直太大了,使人不可想象,苦思费解,如任意两点总在一条直线上,而三点却可以不在一条直线上,两点只能确定一条直线,而不在一条直线的三个点可以确定一个平面,两条直线无法组成闭合多边形,但有了恰当的三条线 ,可以构成一个三角形。方程xn+yn=zn,当n=3时或者n 3时就没有一组整数解,圆规二等分一个角是极容易的事,而圆规三等分一个角,我们却无法做到。谈到这里,我们不禁想问,为何3只多了一个数量单位,就使有关3的数学问题结论截然不同,可见3在数学领域里是一个极神秘的。
数学中三是对立统一的和谐整体,三的构造是一种很美丽的宝塔形,所以它普遍得到艺术家的偏爱,画家作画爱画三件物(或人);作家著书爱写三部曲-上,中,下集;诗人作诗爱用 三 这个数字,如唐代大诗人李白在《望庐山瀑布》中留下了 飞流直下三千尺,疑是银河落九天 的光辉诗句。我国计划生育提倡一对夫妻只生一个孩子,一家三口人,包含三种关系,形成稳定的结构,3成了每个家庭偏爱的数字。
自然数中3是个最小的不是偶数的质数,3的平方是9,而9是个奇妙无比的数字,一个数是否能被3整除,只要它的各位数字和能被3整除,则这个数就一定能被3整除。如123、1356、2421它们的和分别是6、15、21都能被3整除,则可断定它们都能被3整除。
平面几何中,三角形简直是一个三的世界,任何一个三角形都有三条边,三个角,三条角平分线,三条中线,三条中位线和三条高。直角三角形的勾股数是三个和谐的整数,代数中,三角函数知识包括着许多许多的奇妙的公式和有趣的恒等式,形式多样,变化万千,给学习者以无限的乐趣,立体几何中的三垂线定理,应用广泛,可解许多不可直观想象的问题。
数学手抄报资料:变幻莫测的“3” 相关内容:
财产怎么分?
有一位阿拉伯老人,生前养有11匹马,他去世前立下遗嘱:大儿子、二儿子、小儿子、分别继承遗产的二分之一,四分之一,六分之一。儿子们想来想去没法分,他们所得到的都不是整数,总不能把一匹马割成几块来分吧?
答案:聪明的邻居牵来了自己的一匹马,对他们说:你们看,现在有12匹马了,老大得12匹的二分之一就是6匹,老二得12匹的四分之一就是三匹,老三得12匹的六分之一就是2匹,还剩下一匹我照样牵回家去。
谁在说谎?
小明去钓鱼,但却不知道去鱼塘的路怎么走,他在路上遇到张三,李四和王五三个人,于是便向他们问路,谁知三个人各有各的说法,而且,他们又叮嘱小明不要相信别人的话。
张三说:李四在说谎
李四说:王五在说谎
王五说:张三,李四都在说谎!
三人中有一人说的是真话,请问三个人中到底谁在说真话,谁在说假话呢?
答案:张三说假话,王五说假话而李四是说真话。
猜一数学名词:
1、五四三二一 (倒数)
2、每份一样多(平均数)
3、手算(指数)
打一成语
1、 的倒数 (颠三倒四)
2、1的任意次方(始终如一)
3、 (千变万化)
4、 ×100×100(千方百计)
5、5、2、4、6、8、10(无独有偶) 趣味数学题:
一元钱哪里去了
三人住旅店,每人每天的价格是10元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱,三个人总共花了27元,加上服务员贪污的两元总共29元。那一元钱到哪去了?
数学小常识:
人们把12345679叫做 “缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟是由同一个数组成,人们把这叫做 “清一色”。比如:
12345679×9=111111111 12345679×18=222222222
12345679×27=333333333 12345679×81=999999999
这些都是9的1倍至9的9倍的。
还有99、108、117至171的,得出的答案是:
12345679×99=1222222221 12345679×108=1333333332
12345679×117=1444444443 12345679×171=2111111109
这个也叫清一色。
怎样才能学好数学呢
课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。
课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?”
第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的《备忘录》中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到《备忘录》中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高30%-60%。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。
数学手抄报内容资料
【数学手抄报内容:数学简单故事和感悟】
故事一:烧水的问题
有好事者提出这样一个问题: 假如你面前有煤气灶、水龙头、水壶和火柴,你想烧些水应当怎样去做?
被提问者答道: 在壶中放上水,点燃煤气,再把水壶放到煤气灶上。
提问者肯定了这一回答,接着追问: 如其他条件不变,只是水壶中已有了足够的水,那你又应当怎样去做?
这时被提问者很有信心地答道: 点燃煤气,再把水壶放到煤气灶上。
但是提问者说: 物理学家通常都这么做,而数学家们则会倒去壶中的水,并声称已把后一问题转化成先前的问题。
感悟:
数学家 倒去壶中的水 似乎是多此一举,故事的编创者不是要我们去 倒去壶中的水 ,而是引导我们感悟数学家独特的思维方式──转化。
学习数学不是问题解决方案的累积记忆,而是要学会把未知的问题转化成已知的问题,把复杂的问题转化成简单的问题,把抽象的问题转化成具体的问题。数学的转化思想简化了我们的思维状态,提升了我们的思维品质。转化不是就事论事、一事一策,而是发掘出问题中最本质的内核和原型,再把新问题转化成与已经能够解决的问题。
转化思想是数学的基本思想,它应贯穿在我们数学教学的始终。
故事二:两只羊的描述
草地上有两只羊,在艺术家、生物学家、物理学家、数学家看来却有不同的感受与理解,下面是他们的描述。
艺术家: 蓝天、碧水、绿草、白羊,美哉自然。
生物学家: 雄雌一对,生生不息。 物理学家: 大羊静卧,小羊漫步。
数学家: 1+1=2。
感悟:
从故事中不同职业的人对两只羊的描述,我们感受到艺术家对自然美的关注,生物学家对生命的关注,物理学家对运动与静止的关注,而数学家从色彩、性别、状态中抽象出数量关系:1+1=2,这是数学高度抽象性的体现。
在数学教学中,学生的数学学习要经历具体 表象 抽象的过程,教学时要在直观物体和抽象概念之间构建桥梁,从而引导学生把握事物最主要、最本质的数学属性。
抽象有一个学生经历的过程,而不是直接告诉学生抽象的结果。数学抽象本身又是一个不断提高的过程,这一过程永无止境。
【数学手抄报内容:数学名言】
上帝总在使世界几何化。
柏拉图
数学是唯一好的形而上学。
开尔文
对外部世界进行研究的主要目的在于发现上帝赋予它的合理次序与和谐,而这些是上帝以数学语言透露给我们的。
开普勒
数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备。
麦斯韦
整个数学所涵括的,正是组织起一系列协助我们思考过程中补助想象的工具。
怀特海
自然这一巨著是用数学符号写成的。
伽里略
纯粹数学,就其本质而言,是逻辑思想的诗篇。
爱因斯坦
算术是人类知识中一个最古老的分支,或许是最最古老的分支;然而它的一些最深奥的秘密,接近于它平凡的真理。
史密夫(HenryJohnSmith1826-1883)
宇宙的伟大建筑师现在开始以纯粹数学家的身份出现。
吉恩斯
数学的本质是对表面上看来完全不同的概念认识其内在的逻辑关系。最成功的数学家是知识面最宽、概念的类比、想象能力最强的人
爱德华
别把数学想象为硬梆梆的、死绞蛮缠的、令人讨厌的、有悖于常识的东西,它只不过是赋予常识以灵性的东西
开尔文
数学的魅力在于它是很有趣的学科。
帕克特
严密性对于数学的净化起着决定性的作用。
波士顿(TimPoston)
数学的严密性如同衣服。其式样应该适时,无论是太松或是太紧,它都将使得活动起来不太舒适,也不太方便。
西蒙斯(s) 一个数学真理本身既不简单也不复杂,它就是它。
埃米尔
任何一门数学分支,不管它如何抽象,总有一天会在现实世界中找到应用。
罗巴切夫斯基
使数学脱离实际需要,就好比把母牛关起来不让她接触公牛.
切比雪夫
在大多数学科里,一代人的建筑往往被另一代人所摧毁,一个人的创造被另一个人所破坏;唯独数学,每一代人都在古老的大厦上添加一层楼。
【数学手抄报内容:快速记住公式的六个方法】
记忆是知识的仓库,学过的知识记得牢,积累的知识就丰富,而丰富知识的积累将为创造型人才的培养奠定坚实的基础。怎样才能提高学生记忆数学知识点的效果呢?下面培优教育的老师介绍几种方法:
1、归类记忆法
就是根据识记材料的性质、特征及其内在联系,进行归纳分类,以便帮助学生记忆大量的知识。比如,学完计量单位后,可以把学过的所有内容归纳为五类:长度单位;面积单位;体积和容积单位;重量单位;时间单位。这样归类,能够把纷纭复杂的事物系统化、条理化,易于记忆。
2、歌诀记忆法
就是把要记忆的数学知识编成歌谣、口诀或顺口溜,从而便于记忆。比如,量角的方法,就可编出这样几句歌诀: 量角器放角上,中心对准顶点,零线对着一边,另一边看度数。采用这种方法来记忆,学生不仅喜欢记,而且记得牢。
3、规律记忆法
即根据事物的内在联系,找出规律性的东西来进行记忆。比如,识记长度单位、面积单位、体积单位的化法和聚法。化法和聚法是互逆联系,即高级单位的数值 进率=低级单位的数值,低级单位的数值 进率=高级单位的数值。掌握了这两条规律,化聚问题就迎刃而解了。
4、列表记忆法
就是把某些容易混淆的识记材料列成表格,达到记忆之目的。这种方法具有明显性、直观性和对比性。比如,要识记质数、质因数、互质数这三个概念的区别,就可列成表来帮助学生记忆。
5、重点记忆法
随着年龄的增长,所学的数学知识也越来越多,学生要想全面记住,既浪费时间且记忆效果不佳。因此,要让学生学会记忆重点内容,学生在记住了重点内容的基础上,再通过推导、联想等方法便可记住其他内容了。比如,学习常见的数量关系:工作效率 工作时间=工作量。工作量 工作效率=工作时间;工作量+工作时间=工作效率。这三者关系中只要记住了第一个数量关系,后面两个数量关系就可根据乘法和除法的关系推导出来。这样就减轻了学生记忆的负担,提高了记忆的效率。
6、联想记忆法
就是通过一件熟悉的事物想到与它有联系的另一件事物来进行记忆。
关于数学手抄报的图片资料
关于数学手抄报的:数学的力量
数学的作用不局限于它是一门知识,更不仅仅是工具。哪个学科一旦与数学的某个问题挂上了钩,往往就能得到一个飞跃的发展。这方面的例子很多,比如,80年代Hauptmann得了诺贝尔化学奖,他解决的是如何用X光确定晶体结构的问题,主要靠的就是数学。获得诺贝尔化学奖以后,他跟人讲,我的化学水平就是大学念了半年的普通化学。这很值得我们深思。
数学往往能够对不同的学科起作用,但对什么学科起作用,以什么样的方式起作用,并不是我们事先能够预料的。从科学发展来看,数学和许多学科都发生过密切的关系,数学的发展和许多学科的发展都起着很相辅相成的作用就是或者说数学的发展促进了其他学科的发展,或者其他学科向数学提出了许多具体的问题,结果也推动了数学的发展。比如,最早提出博弈论的是冯诺依曼。二次世界大战时,德国的空军很强,飞机数量多,质量也好。为了解决如何以处于劣势的美国空军打败德国空军的问题,美国就找了一批数学家,冯诺依曼就在其中。他是个大数学家,结果就是他从这个问题里发展出了博弈论。
关于数学的地位,有的人提出这样一种说法,认为数学是科学的王后。这个说法很多数学家不赞成。数学并不是孤立于其他学科而高高在上的,而是和其他学科相辅相成,共同促进,共同发展。把数学与其他学科的关系说成是伙伴关系,也许更恰当一些。我们现在说的数学的定义是恩格斯在《自然辩证法》中提出来的。他说,数学是研究客观世界的数量关系和空间形式的。恩格斯这个定义是19世纪提的,随着20世纪数学的发展,很多东西这个定义解决不了。说到数量关系,就是指数学研究数的运算。但随着数学的发展,数学运算的对象远远超出了数。空间形式是指当时被理解为客观世界的空间形式,也就是我们所说的三维空间。但是,几何学里的研究已经远远超出了三维,涉及到四维、五维、多维甚至无数维。所以拿19世纪的定义来概括数学就显得很不够。
解放后,我参加了很多次讨论,就是如何给数学下定义。到现在为止,我觉得没有一个定义是让人满意的。这也说明数学的定义很难下。比如有人提出来,数学是研究“量”的,把“数”字去掉。他说,有“数”呢,就显得太死了。那什么叫“量”呢?我给提出这个概念的人说过,你说的“量”是一个哲学概念。现在又有人说数学研究的是秩序,也就是说,数学的研究就是给这个世界以秩序。想想这种说法也有点道理,但说的还是不大清楚。从这里可以看出一条,数学与其他自然科学和社会科学不一样,因为数学的研究对象是抽象的。而那些学科都有非常具体的对象,但数学没有。数学所以能用到自然科学,又能用到社会科学,甚至人文学科,就是因为它是抽象的。数学研究对象的抽象性首先有一条,就是能够训练我们一种思维方法抽象思维方法。数学里即使是从自然数开始,也已经是非常抽象的概念了,要经过很多层抽象才能够得出来。你要研究数学发展史,就会发现数的概念的形成其实是很不容易的。所以,学数学可以训练人的抽象思维能力。
抽象这种思想方法为什么这么重要呢?因为我们要把握住一个东西,就必须去掉很多你认为不重要的东西,要舍弃很多非本质的东西,就是必须通过抽象。抽象的思想方法对于研究科学,甚至处理日常生活里出现的问题都是重要的。如果你没有抽象的能力,你就不容易分清你现在究竟要解决的是什么问题。这是数学突出的特点,即它的抽象性。数学的抽象性使得数学广泛地应用于很多方面,应用到很多完全不同的方面。
第二个特点,因为数学的抽象性,所以对数学对象必须要讲得非常清楚,也就是要下定义。其他学科对定义的要求不太一样,我们可以大致描述一下那是个什么东西,听的人就能够明白。可是数学因为它的对象抽象,简单地描述是不行的,必须要有严格的定义。数学里的定义非常重要,这一点大家都能体会到。我在教学中发现,其他系的老师到数学系讲课,往往遇到一个很大的困难。因为学生什么都问定义,比如物理系的老师来讲课,他讲到“力”,学生就要求给“力”下定义。这非常困难,因为老师很难用几句话把“力”刻画清楚,不像数学里讲“圆”,就是从一点出发画出的等距离的轨迹,说得多清楚。
数学为什么对定义有这么严格的要求呢?就以为它的对象抽象,你不通过定义把它界定清楚,就没法讨论。我经常开玩笑地说,学数学的人是非常笨的,他听的东西,只要那个定义没说清楚,他就听不懂。在这个意义上,有它的好处,也有它的坏处。你什么都要定义,其实并不是所有的东西都可以下定义的。
数学的第三个特点是它的逻辑的严格性。因为它是抽象的,所以它的展开只能靠逻辑,这一点对我们来说也是非常重要的训练。这我们可以从平面几何来理解。学了平面几何究竟起什么作用呢?年轻的时候,也就是念了大学的数学以后,我就宣称平面几何没有用,一些难题现实中到哪里去找啊?20世纪50年代,我参加过中学数学的教学改革,就经常说平面几何应该取消。但后来当了几年教员后,我就发现,学过平面几何和没学过的学生有一点不一样,就是你说要证明一个问题,学过平面几何的学生很容易接受,但没有学过的接受起来就比较困难。“文革”期间的学生,你让他证明三角形的三个内角之和是180o,他们很多人就会说,这么简单的问题还要你证啊?拿量角器量一下不就得了,搞得我们啼笑皆非。这就说明,逻辑思维能力是需要通过一些具体的东西来培养的,平面几何就是培养人们逻辑思维能力的很好的媒介。过去我们曾经认为,通过上逻辑课可以直接获得逻辑思维能力,为此,在中学还专门开过形式逻辑课,但最后证明效果很差,后来才知道人的逻辑思维能力是不能单单通过上逻辑课来培养的。
通过学习数学,能够获得很好的思维习惯、思想方法,在无形中会对我们起作用,举个例子,“文革”中,经常下工厂联系实际。我们中的很多人可能对工厂里的实际问题不清楚,但是只要你能把逻辑关系理清楚,就能知道它是个什么问题,已知的条件是什么,要解决的问题是什么。这就是我从学习数学中逐渐学到的。不同专业的数学教学计划,都涉及数学课安排多少的问题。我的看法,不是数学课越多越好,因为总的教学时间是有限的。考虑数学课的时候,应该从两方面来考虑,一是数学对你未来可能从事的专业有没有用,有多少用。用得多的,就要多下一些功夫。另一方面,还要顾及到数学是一个整体,学习数学可以培养一个人的思想方法。为了培养思想方法,你就不能用多少学多少。这种情况是有的,在“文革”中,就曾经搞过数学结合专业讲。专业里用到什么就讲什么,完全把数学变成工具,这样其实是学不好数学的。所以,数学课程的设置,既要考虑到用,又要考虑到数学是一个完整的体系,要使学生对数学的整个结构有比较清楚的了解。
用得着的东西要讲,也不是所有用得着的东西都要讲。数学知识可以分两种,一种是比较基础的,一定要学通;还有一种是属于提高的,这些等到你用的时候再学还来得及。比如十几年前,大家都感到计算机的用途越来越广,于是就学习计算机语言。但后来的经验是,语言学多了也没有用 有的同志经常说,数学是美的享受,这话我就不大懂。有些时候你可以说数学很美,但也就是说说,不能过分夸大。因为这不是数学的本质的规定性。数学不只是知识,它同时培养人的能力,提高人的素质,能给人一无形中的影响。我经常碰到这样一些学生,他们毕业已经很多年了,并且完全改了行。他们告诉我,在大学一年纪时听过我的课,这些课对他们还是有影响的。听了这些话我当然很高兴。我觉得,他们讲的不完全是恭维我的话,我讲的那些内容可能他们早就忘了,那些公式、定理他们早就不记得了,但是他们也许在我的课上学会了一些思考问题的方法,这些方法能够使他们终身受益。记得有位数学家讲过这样一句话,今天数学教育的质量,决定着明天科学人才的水平
以下无正文
更多推荐
数学,问题,记忆,方法,学生,单位,学习,老师
发布评论