2023年12月16日发(作者:高考数学试卷有多大面积)

刘徽的数学成就

文章来源:现代教育报·思维训练 作者:本报 点击数:3994 更新时间:2008-5-18 15:52:4

一、刘徽生平

刘徽是中国古代最伟大的数学家之一.

他是三国时代魏国人,籍贯山东,生卒年不详,约死于西晋初年.刘徽出身平民,终生未仕,称为“布衣”数学家.

刘徽在童年时代学习数学时,是以《九章算术》为主要读本的,成年后又对该书深入研究,于元263年左右写成《九章算术注》,刘徽自序说:“徽幼习《九章》,长再详览.

观阴阳之割裂,总算术之根源.探赜之暇,遂悟其意,是以敢竭顽鲁,采其所见,为之作注.刘徽在研究《九章算术》的基础上,对书中的重要结论一一证明,对其错误予以纠正,方法予以改并提出一些卓越的新理论、新思想.《九章算术注》是刘徽留给后世的十分珍贵的数学遗产,是中传统数学理论研究的奠基之作.

刘徽还著有《重差》一卷,专讲测量问题.他本来把《重差》作为《九章算术注》的第十卷,代初年改为单行本,并将书名改作《海岛算经》,流传至今.

从刘徽著作来看,他学风严谨,实事求是,而且富于批判精神,敢于创新,理论研究相当深入堪称数学史上的一代楷模. 二、《九章算术注》

此为刘徽的力作,反映了他在算术、代数、几何等方面的杰出贡献.

1.算术

(1)十进分数

刘徽之前,计算中遇到奇零小数时,就用带分数表示,或者四舍五入.刘徽首创十进分数,用表示无理根的近似值.这种记数法与现代

刘徽用忽来表示,但a后各位就不必再命名了,刘徽称它们为“微数”,说:“微数无名者以为分其一退以十为母,其再退以百为母.退之弥下,其分弥细.”这种方法,与我们现在开平方求无理的十进小数近似值的方法一致,即

其中a1,a2,…,an是0至9之间的一位整数.

(2)齐同术

《九章算术》中虽有分数通分的方法,但没有形成完整理论,刘徽提出齐同术,使这一理论趋完善.他说:“凡母互乘子谓之齐,群母相乘谓之同.”又进一步提出通分后数值不变的理论依据即“一乘一除,适足相消,故所分犹存“法实俱长,意亦等也”.前句话的意思是,一个分数用同个(非零)数一乘一除,其值不变;后句话的意思是,分数的分子、分母扩大同一倍数,分数值不变.徽指出,“同”即一组分数的公分母,“齐”是由“同”而来的,是为了使每个分数值不变.另外刘徽还将齐同术引而伸之,用来解释方程及盈不足问题.

2.代数

(1)对正负数的认识 《九章

术》成书后正负数的运算越来越广泛,但究竟应该如何认识正负数,却很少有人论及.刘徽在《九章算术注》中首次给出负数的明确定义:“今两算得失相反,要令正负以名之.”就是说以正负数表示得失相反的量.他进一步阐述正负的意义:“言负者未必负于少,言正者未必正于多.”即负数绝对值未必少,正数对值未必大.另外,他又提出筹算中表示正负数的两种方法:一种是用红筹表正数,黑筹表负数;一种是以算筹摆法的正、斜来区别正、负数.这两种方法,对后世数学都有深远影响.

(2)对线性方程组解法的改进

《九章算术》中用直除法解线性方程组,比较麻烦.刘徽在方程章的注释中,对直除法加以改创立了互乘相消法.例如方程组

刘徽是这样解的:

(1)×2,(2)×5,得

(4)-(3),得

21y=20(下略).

显然,这种方法与现代加减消元法一致,不过那时用的是筹算.刘徽认为,这种方法可以推广多元,“以小推大,虽四、五行不异也.”他还进一步指出,“相消”时要看两方程首项系数的同同则相减,异则相加.刘徽的工作,大大减化了线性方程组解法.

(3)方程理论的初步总结 刘徽在深入研究《九章算术》方程章的基础上,提出了比较系统的方程理论.刘徽所谓“程”程式或关系式的意思,相当于现在的方程,而“方程”则相当于现在的方程组.他说:“二物者再三物者三程,皆如物数程之.并列为行,故谓之方程.”这就是说:“有两个所求之物,需列两个有三个所求之物,需列三个程.程的个数必须与所求物的个数一致.诸程并列,恰成一方形,所以方程.”这里的“物”,实质上是未知数,只是当时尚未抽象出未知数的明确概念.定义中的“皆物数程之”是十分重要的,它与刘徽提出的另一原则“行之左右无所同存”,共同构成了方程组有一组解的条件.若译成现代数学语言,这两条即:方程个数必须与未知数个数一致,任意两个方程系数不能相同或成比例.刘徽还认识到,当方程组中方程的个数少于所求物个数时,方程组的解不一;如果是齐次方程组,则方程组的解可以成比例地扩大或缩小,即“举率以言之”.

对于方程组的性质,刘徽总结出如下诸条:“令每行为率”,即方程各项成比例地扩大或缩小不改变方程组的解;“每一行中,虽复赤黑异算,无伤”,即方程各项同时变号,不改变方程组的“举率以相减,不害余数之课也,即两方程对应项相减,不改变方程组的解.很明显,刘徽对于线方程组的初等变换,已经基本掌握了.不过,他没有考虑交换两个方程的位置,因为不进行这种变亦可顺利求出方程组的解,而且调换算筹的位置是不方便的.

3.几何

(1)割圆术

刘徽以前,一般采用周三径一的圆周率,这是很不精确的.刘徽在《九章算术注》中指出:周径一的数据实际是圆内接正六边形周长和直径的比值,不是圆周与直径的比值.他认为圆内接正多形的边数越多,其面积就越接近圆面积.他从这一思想出发,创立了科学的求圆周率方法---割圆术体来说,就是以1尺为半径作圆,再作圆内接正六边形,然后逐渐倍增边数,依次算出内接正六边正12边形乃至正192边形的面积.刘徽之所以选半径为1,是为了使圆面积在数值上等于圆周率,而简化运算.他利用公式

(ln为内接正n边形边长,S2n为内接正2n边形面积) 来求各正多边形面积.至于正多边形边长,他是反复利用勾股定理来求的.例如,由以下三式即可得正12边形边长(图4.14):

TR=OR-OT,

后,便根据

S192<S<S192+(S192-S96)

刘徽舍弃分数部分,取圆面积为314平方寸,从而得到π=3.14、这种方法可以求得任意精度圆周率近似值,刘徽对这一点是很清楚的.不过,他根据当时的需要,运算中只取到两位小数. 割圆术的创立是数学史上的一件大事.古希腊的阿基米德(Archimedes,公元前287---前212曾用割圆术求圆周率,他的方法是以圆内接正多边形和外切正多边形同时逼近圆,比刘徽的方法麻一些.刘徽的成就晚于阿基米德,但是独立取得的. (2)几何定理的证明

刘徽采用出入相补原理,证明了《九章算术》中许多几何公式和定理.例如,他在证明三角形积公式时,思路如下:把三角形的高h二

自乘为青方,令出入相补,各从其类,因就其余不移动也,合成弦方之幂.”可惜的是原图失所以不知刘徽怎样“出入相补”.

刘徽在研究立体几何时,发现“邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居不易之率也”.即“过对角面分割堑堵为一个阳马(图4·16中ABCDE)和一个鳖臑(图4·中DEFC),则阳马与鳖臑的体积之比恒为二比一.”为叙述方便,我们称之为阳马定理.刘从长方体体积公式出发证明了这一定理,然后用它证明了各种多面体的体积公式.另外,他发现了一条重要原理:对两个等高的立体,若用平行于底面的平面截得的面积之比为一常数则这两立体的体积之比也等于该常数.这一原理可称为“刘徽原理”.在《九章算术注》中刘徽多次运用了这一原理,例如,圆台体积∶外切正四梭台体积=圆面积∶外切正方形面积π∶4.书中对圆锥、圆台等旋转体体积公式的推导,都是以刘徽原理为依据的.

(3)对球体积的研究

刘徽发现了《九章算术》中球体积公式不正确,试图利用刘徽原理求出正确的球体积式.他首先作球的外切立方体,然后用两个直径等于球径的圆柱从立方体内切贯穿(图4.17)是,球便被包在两圆柱相交的公共部分,而且与圆柱相切.刘徽只保留两圆柱的公共部分,名“牟合方盖”.(图4.18)根据刘徽原理,球体积与牟合方盖体体积,整个问题就迎而解了.刘徽没有成功,只好“以俟能言者”.但他的思路正确,为后人解决这一问题打下基础.

4.刘徽的极限观念

从《九章算术注》可以看到,刘徽具有明确的极限思想.他把极限用于代数和几何研究取得重要成果.这说明极限思想从春秋战国时期萌芽以后,到这时已有较大发展.

例如,刘徽的割圆术便建立在极限理论的基础上.他说:“割之弥细,所失弥少,割之割,以至于不可割,则与圆合体而无所失矣.”就是说当圆内接正多边形的边数无限增加时正多边形面积的极限便是圆的面积.他还把割圆术用于求弓形面积.如图4.19,刘徽在弓内

为弓形面积.显然,用此方法可使弓形面积达到任何需要的精确度.

刘徽在研究开方不尽的问题时,认为求出的位数越多,就越接近真值,但永远不会达到值,只能根据需耍,求到“虽有所弃之数,不足言之也”的程度.刘徽正是在这种极限观念基础上创立十进分数的.他在征明有关体积的定理(如阳马定理)时也用到极限,并深刻地指极限问题“谓以情推,不用筹算”,就是说研究极限靠思维和推理而不靠具体计算.

三、刘徽的重差术

重差术是中国古代的一种重要测量方法,用以测量不可到达的距离.刘徽对这一理论进行了总结和高,写出重差术专著---《海岛算经》(即《重差》).他在序言中说:“凡望极高、测绝深而兼知其者必用重差.”全书只有九道题,但很有代表性.

例如第一题(译为今文):为测量海岛,立两根3丈高的标杆,前后相距1000步,令后杆与前对齐.从前杆后退123步,人眼着地看岛峰,视线正好过杆顶.从后杆后退127步,人眼着地看岛视线也过杆顶.问岛高和岛离杆的距离各是多少?

按题意画图如下:

因当时1步为6尺,故标杆高5步.由刘徽术文,得

若用字母表示,则

因公式中用到d(两杆与岛的距离差)和a1-a2两差之比,所以叫重差术.这是书中最简单一题,只须测望二次.其他问题往往要测望三次或四次,但原理与本题相同.刘徽曾著《重图》和《重差注》,可能是用来推导术文的,已佚.估计刘徽的推导方法不外两种,一是利出入相补,二是利用相似三角形.

如果用三角知识去解重差问题,结果也是一样的.中国传统数学无三角,重差术便着与西方平面三角类似的作用,这是中国数学的特色之一.

四、刘徽的学术思想

刘徽所以能在数学上取得卓越成就,是与他先进的学术思想分不开的.概括起来,他的术思想有如下特点.

1.富于批判精神.刘徽在数学研究中不迷信权威,也不盲目地踩着前人的脚印走,而有自己的主见.他曾一针见血地指出张衡关于球体积的不正确观点,还批评了那种泥守古人“三径一”的踵古思想,说:“学者踵古,习其谬失.”刘徽正是因为有这种可贵的批判精神才在研究《九章算术》时发现许多问题,从而深入探讨,写出名垂千古的《九章算术注》. 2.注意寻求数学内部的联系.刘徽在《九章算术注》的序言中说:“事类相推,各有归,故枝条虽分而同本干者,知发其一端而已.”不难看出,他的整个数学研究都贯穿了这思想.例如,他把许多平面几何问题归为出入相补,把许多体积公式的推导归为刘徽原理,各种比例问题归为今有术,以及用重差术的一般方法解决各种测量问题,都是这一思想的体 3.注意把数学的逻辑性和直观性结合起来.刘徽主张“析理以辞,解体用图”,就是问题的理论分析要用明确的语言表达,空间图形的分解要用图形显示,也就是理论和直观并用.他认为只有这样才能使数学既简又明.实际上,他对原书和《九章算术注》中提出的重数学概念,都给出明确定义.他对定理、公式的证明基本上采取演绎法,推理相当严密.例他从长方体体积公式出发,运用极限观念,证明了阳马定理,又用阳马定理证明了棱锥、棱的体积公式,然后根据刘徽原理推出圆锥、圆台的体积公式,是一环扣一环的.另一方面,徽也很注意数学的直观.他常借助图形来证明平面几何定理,称为图验法;借助立体模型来究开立方和推导体积公式,称为棋验法(刘徽称特定的立体模型为棋).有时,他还在证明过中辅之以剪贴和涂色的方法.总之,他在数学研究中既注意逻辑推理,又注意运用直观手段所以他的理论明白易懂.

五、与刘徽同时代的数学家---赵爽

赵爽是三国时代吴国数学家.他与刘徽一南一北,各自独立地进行数学研究,刘注《九算术》而赵注《周髀算经》.虽然《周髀算经注》没有《九章算术注》那样精采,但其中也不少独到见解.尤其是一段名为“勾股圆方图”的论文,是数学史上的珍贵文献.文中给出股定理的证明,并导出勾、股、弦及其和差互求的24条命题.令人惊讶的是,这样丰富的容,竟包含在仅五百余字的论文中,可见语言之精炼.下面便根据赵爽的弦图及注文,介绍证明勾股定理的方法.

弦图是一个以勾股形之弦为边的正方形(图4.21),其面积称为弦实.图中包含四个全的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称朱实、黄实.因为勾×股=朱实,所以2×勾×股=4朱实,又因为(股-勾)2=黄实,所以 2×勾×股+(股-勾)2=4朱实+黄实=弦实.

化简,得 勾2+股2=弦2.

另外,赵爽在《周髀算经注》中还给出并证明了日高术,构思十分巧妙.其术为:在地上立两根高为h的表(标杆)AB和CD,它们之间距离为d,太阳照表,得影长a1,a2,则

赵爽画日高图如图4.22,证明思路如下:

由出入相补原理,得

□HC=□CN,□GC=□AN(□表矩形面积).

相减,得 □HJ=□CB,

∴(a1-a2)×HI=dh,

赵爽的这种出入相补方法对后世有一定影响,只是由于日高术假定大地是平面,所以不可能得日高的正确数值.

文章来源:现代教育报·思维训练 作者:本报 点击数:4161 更新时间:2008-5-18 15:52:49

/math/?ArticleID=389&Page=1

/AMuseum/math/4/46/4_46_1009.


更多推荐

体积,数学,方法,证明,方程,研究,面积,公式