答案解析

查看更多优质解析解答一举报设S=1^2+2^2+.

+n^2 (n+1)^3-n^3 = 3n^2+3n+1 n^3-(n-1)^3 = 3(n-1)^2+3(n-1)+1 .

.

.

.

.

.

.

.

2^3-1^3 = 3*1^2+3*1+1 把上面n个式子相加得:(n+1)^3-1 = 3* [1^2+2^2+.

.

.

+n^2] +3*[1+2+.

+n] +n 所以S= (1/3)*[(n+1)^3-1-n-(1/2)*n(n+1)] = (1/6)n(n+1)(2n+1)

更多推荐