答案解析
查看更多优质解析解答一举报当a>0且a≠1时,
M>0,
N>0,
那么:(1)log(a)(MN)=log(a)(M)+log(a)(N);(2)log(a)(M/N)=log(a)(M)-log(a)(N);(3)log(a)(M^n)=nlog(a)(M) (n∈R)(4)换底公式:log(A)M=log(b)M/log(b)A (b>0且b≠1)(5) a^(log(b)n)=n^(log(b)a) 证明:设a=n^x 则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)(6)对数恒等式:a^log(a)N=N;log(a)a^b=b(7)由幂的对数的运算性质可得(推导公式)1.
log(a)M^(1/n)=(1/n)log(a)M ,
log(a)M^(-1/n)=(-1/n)log(a)M2.
log(a)M^(m/n)=(m/n)log(a)M ,
log(a)M^(-m/n)=(-m/n)log(a)M3.
log(a^n)M^n=log(a)M ,
log(a^n)M^m=(m/n)log(a)M4.
log(以 n次根号下的a 为底)(以 n次根号下的M 为真数)=log(a)M ,
log(以 n次根号下的a 为底)(以 m次根号下的M 为真数)=(m/n)log(a)M5.
log(a)b×log(b)c×log(c)a=1对数与指数之间的关系当a>0且a≠1时,
a^x=N x=㏒(a)N
更多推荐
发布评论