答案解析
查看更多优质解析解答一举报由正弦定理:a/sinA=b/sinB=c/sinC=2R,
得:a/(2R)=sinA,
b/(2R)=sinB,
c/(2R)=sinC.
进而得:(a^2+b^2-2ab×cosC)/(2R)^2=(sinA)^2+(sinB)^2-2sinAsinBcosC=(sinA)^2+(sinB)^2-2sinAsinBcos(180°-A-B)=(sinA)^2+(sinB)^2+2sinAsinBcos(A+B)=(sinA)^2+(sinB)^2+2sinAsinB(cosAcosB-sinAsinB)=(sinA)^2+(sinB)^2+2sinAsinBcosAcosB-2(sinAsinB)^2=[(sinA)^2-(sinAsinB)^2]+[(sinB)^2-(sinAsinB)^2]+2sinAcosBcosAsinB=(sinA)^2[1-(sinB)^2]+(sinB)^2[1-(sinA)^2]+2sinAcosBcosAsinB=(sinAcosB)^2+(cosAsinB)^2+2sinAcosBcosAsinB=(sinAcosB+cosAsinB)^2=[sin(A+B)]^2=[sin(180°-C)]^2=(sinC)^2=c^2/(2R)^2两边同时乘以(2R)^2,
得:a^2+b^2-2ab×cosC=c^2
更多推荐
发布评论