答案解析
查看更多优质解析解答一举报换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下:N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N.
.
.
更多推荐
查看更多优质解析解答一举报换底公式 log(a)(N)=log(b)(N) / log(b)(a) 推导如下:N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得 N = {b^[log(b)(a)]}^[log(a)(N)] = b^{[log(a)(N)]*[log(b)(a)]} 又因为N=b^[log(b)(N)] 所以 b^[log(b)(N.
.
.
更多推荐
发布评论