【导语】下面是小编给大家带来高一物理绪论课件(共16篇),一起来阅读吧,希望对您有所帮助。
篇1:高一物理绪论课件
高一物理绪论课件
教学目标
⒈激发学生学习物理学的兴趣,培养远大的学习志向.
⒉高中物理研究的主要内容以及学习高中物理的基本方法。
教学设计思路
运用物理学史上一些生动活泼的实例,激发学生学习物理学的兴趣,树立正确的学习动机;帮助学生了解物理学的主要内容,理解为什么要学习高中物理,明确怎样才能学好高中物理,使学生在今后的学习中处于主动、自觉、乐学的地位,为完成由初中向高中的过渡及进一步学习物理做好思想上和方法上的准备;用老一辈科学家献身我国科学事业的崇高精神鼓舞和激励学生,使他们明白,不仅要有爱国之情、报国之志,更要有报国之能,培养远大的学习志趣.
教学过程:
介绍物理学的特点、研究领域和地位
物理学是以实验为基础,运用思维和数学工具研究最基本最广泛的物质运动规律和物质结构层次的一门精密的自然科学。时间上,物理学前溯到宇宙起源,后推到宇宙的归宿;空间上,小到基本粒子,大到宇宙天体,近乎无所不在,无所不容。
物理学是自然科学六大基础学科的两大支柱之一,是现代技术(包括信息技术、生物技术、通信技术、航天与空间技术和镭射技术即激光技术)的重要基础.现代科技的三大支柱(材料科学、能源科学和信息科学)和现代科研的三大前沿阵地(基本粒子、天体演化和生命起源)也处处离不开物理学的研究成果和研究方法.
物理学的高技术和强渗透性也使之成为社会发展的重要推动力.
高中物理研究的主要内容
高中物理分为力学、热学、电学、光学、原子物理与核物理和相对论初步六部分内容,涉及宏观和微观粒子的规律和结构特征.
⒈力学部分,主要研究运动和力的关系问题.重点学习牛顿运动定律、机械能和动量等知识.
演示:小球从竖直圆环的斜轨道上不同位置释放后在竖直圆环上的不同运动情况以及小球恰能沿圆环做完整圆周运动的临界情况.指出,通过高中力学部分的学习,我们将理解小球做上述各种运动的原因并能定量计算出小球恰过最高点的条件游乐场中的“翻滚过山车”和杂技演员表演的“水流星”节目就以此为基本原理.(演示“水流星”节目,使同学们看到小水桶过最高点且开口向下时水竟一点不流出来.)
演示:竖直方向弹簧振子的运动.
介绍运载火箭的工作原理.多媒体介绍特技演员飞跃四十多米宽黄河的精彩表演.
⒉热学介绍,主要研究分子动理论和气体的热学性质.以投硬币为例向学生介绍大量微观粒子的运动所遵循的.统计规律;介绍热气球升空原理及日常生活中的吸盘、拔火罐等均遵循热学规律.
⒊电学部分,主要研究电场、电路、磁场、电磁感应和交流电等内容。简介这部分内容在科学技术及日常生活中的应用,如磁悬浮列车、超导技术、电磁继电器等.
演示:自感现象.
⒋光学部分,主要研究光的传播规律和光的本质属性.介绍光缆通讯,演示光导纤维传播电能的实验.介绍光电管的应用——有声电影以及银行、宾馆的自动门等.
⒌原子物理与核物理部分,主要研究原子和原子核的组成与变化规律以及人类了解微观世纪的科学方法,简介核裂变—原子弹的原理,核聚变反应——氢弹原理,核能的利用——核电站等。介绍我国“两弹”元勋邓稼先,放弃国外优厚的生活待遇和优越的工作条件,毅然回到当时还很贫穷的祖国,长期工作和生活在荒无人烟的沙漠,与他的战友一起研制出了我国自己的原子弹和氢弹,为保卫祖国的安全和维护世界和平做出了卓越的贡献。
⒍相对论简介,主要研究物体在光速、准光速和近光速情况下运动的物理现象.介绍高速空间尺缩、质增、钟慢效应以及“光子飞船”、“黑洞”和“引力透镜”等.
从上面介绍中可以看出,高中物理与初中物理相比,知识面加宽了,内容加深了——从定性到定量.
为什么要学习高中物理
⒈物理学与人类的生活、生产活动关系最为密切.
人类社会发展至今经历了三次大的工业革命,每一次都是物理学的发展为之拉开了序幕.
第一次工业革命:18世纪,由于物理学的一个分支热力学的发展,导致第一台蒸气机的出现,从此工业进入了机械化时代.
第二次工业革命:19世纪(1831年)法拉第发现了电磁感应现象并得出了电磁感应定律,导致发电机、电灯、电唱机等相继问世,从此工业进入电气化时代.
第三次工业革命:20世纪中叶(1946年)电子计算机的诞生到今天电脑网络的大规模使用,标志着工业进入了自动化时代,同时也标志着人类即将进入知识经济时代.
事实证明,任何一种新的物质运动形式的发现和理论上的突破,总会导致重大的技术革命,从而促进科学技术的突飞猛进地向前发展,而科技的发展同时又向物理学提出了更高的要求,两者相互促进.今天电子计算机的迅速更新换代正是这一点的例证.
⒉学习物理学是提高自身素质的需要.
学习的根本目的在于提高人的素质.通过物理学的学习,人的各方面素质都会得到显著的提高.
物理学是一门以实验为基础的科学,通过物理学的学习,一方面提高我们的动手操作能力和观察能力,同时也培养我们尊重实验、实事求是的科学作风,提高我们的思想素质.
学习物理学,很重要的一个方面就是学习科学认识自然、探索规律的方法和途径,培养学习者科学的思维方法,提高认识世界的能力.
学习物理学,还要学习科学家献身科学研究和实验,不怕挫折和失败的坚韧不拔的意志品质,使学习者的智力因素和非智力因素都得到发展,提高学习者的心理素质.
物理学充满了对立统一,是活的唯物辨证法.通过学习物理学,学习者自觉不自觉地就受到辨证唯物主义思想的教育,坚持唯物论和辨证法,反对唯心主义和形而上学,坚持真理、崇尚科学,提高辨别是非的能力.
怎样学习高中物理
⒈做好实验,亲手操作,不只当观察员和记录员.要亲身感受知识的获取过程,学会探索,学会创新.
⒉认真阅读教材,学会做摘记,养成良好的自学习惯,为学习课后知识以及今后的进一步学习打好基础.
⒊上课认真听讲,学会做笔记,积极思考、主动回答老师提出的问题,不做旁听生.
⒋学会物理概念和规律,正确运用思维和数学工具解决物理问题.要理解概念和规律的实质,不死记硬背,不把物理知识数学化.
在物理上,1+1不一定等于2.
如:二力平衡,1+1=0
水和酒精混合后体积,1+1<2
同温物体接触,1+1=1(三人拉手,3×36。5℃=36。5℃)
在高中我们还要学到:3+4=5(几何加法)等等.
⒌做好练习,可起到理解、巩固、深化、活化知识的作用。
⒍经得住挫折和失败的考验,做到胜不骄、败不馁,正确对待考试成绩.
课堂小结
今天的绪论课,我们研究了四个问题:
⒈介绍物理学的特点、研究领域和地位;
⒉介绍高中物理研究的主要内容;
⒊为什么要学习高中物理;
⒋怎样才能学好高中物理.
今后,随着学习的不断深入,我们还要结合具体问题学习解决问题的一些思考方法,如分析、综合、归纳、演绎、发散、收敛、图象、图景、动态分析、临界态、极值等方法.千里之行,始于足下,同学们现在要认真学习,将来要用自己的知识和能力改造自然,造福人类,报效祖国!
布置作业
⒈回味绪论课所讲内容.
⒉预习第一章 第一节
教学说明
绪论课是教师的亮相课,第一印象至关重要.要讲得内容、语言生动、贴近生活、激发学习热情,这样,从一开始就将学生牢牢地吸引过来,为今后的教学工作打下良好的基础
篇2:高一物理加速度课件
加速度——速度变化快慢的描述
1 加速度:表示速度改变快慢的物理量,它等于速度的变化量与发生这一变化所用时间的比值
2 表达式:a=△v/△t=(vt-v0)/t(vt表示末速度,v0表示初速度) 3 单位:m/s2 或 m.s-2
4 矢量性:加速度的方向与速度变化量△v的方向相同
5 a=△v/△t所求的应是△t内的平均加速度,若△t很短,也可近似看成瞬时加速度
比较速度v、加速度a、速度变化量△v
匀变速直线运动
1 物体做直线运动的加速度大小、方向都不变,这种运动叫做
1 匀加速直线运动和 ○2 匀减速直线运动 2 分为:○
取初速度方向为正时:
1vt>v0,a>0,加速度为正,表示加速度方向与初速度方向相同; ○
2vt<v0,a<0,加速度为负,表示加速度方向与初速度方向相反。 ○
3 匀变速直线运动的特点: (1)加速度大小、方向都不变
(2)加速度不变,所以相等时间内速度的变化一定相同△v = a△t (3)在这种运动中,平均加速度与瞬时加速度相等 速度——时间图像(v-t图像)
1 图像是一条直线,说明物体速度均匀增加或减小,即物体加速度不变,所以是匀变速直线运动
2 斜率的正负判断是匀加速直线运动或匀减速直线运动,直线的斜率表示加速度 3 如果是一条曲线,则曲线上某时刻的切线斜率大小表示该时刻的瞬时加速度大小
篇3:高一物理加速度课件
【基础梳理】 一.加速度
1.定义:加速度是_________与发生这一变化所用时间的________。表达式为__________。
2.单位:在国际单位制中,加速度的单位是__________,符号是______或________。
3.物理意义:为描述物体运动速度____________而引入的物理量。 二.加速的方向与速度方向的关系
1.加速度的方向:总是与__________的方向相同,其中△v=v2-v1
2.与的方向关系:在直线运动中,如果速度增加,a与v的方向_______,如果速度减小,a与v的方向________。 三.从v-t图像看加速度
1.v-t图像反映了物体的______随_____变化的规律,通过v-t图像我们还可以知道物体的______。
1.匀变速直线运动的v-t图像是一条___________,并且直线的____表示______,即a=__________=k(斜率)。
【思考讨论】
1. 加速度是矢量还是标量?其方向与速度方向相同吗? 2. 如果一个物体的速度很大,他的加速度是否一定很大? 3.加速度为正值时,物体一定做加速运动吗?
【小试身手】
1.关于物体的下列运动中,不可能发生的是( C)
A.加速度逐渐减小,而速度逐渐增大 B.加速度方向不变,而速度的方向改变
C.加速度大小不变,方向改变,而速度保持不变
D.加速度和速度都在变化,加速度最大时速度最小;加速度最小时速度最大
2.以下对于加速度这个物理量概念的认识中,错误的是( BD )
A.加速度数值很大的运动物体,速度可以很小
B.加速度数值很大的运动物体,速度的变化量必然很大 C.加速度数值很大的运动物体,速度可以减小得很快
D.加速度数值减小时,物体运动的速度值也必然随着减小
3.根据给出的速度、加速度的正负,对具有下列运动性质物体的判断正确的是(D ) A.v0<0、a>0,物体做加速运动 B.v0<0、a<0,物体做加速运动
C.v0>0、a<0,物体先做减速运动后加速运动 D.v0>0、a=0,物体做匀速运动
4.关于速度和加速度的关系,下列说法正确的有( CD)
A.加速度越大,速度越大
B.速度变化量越大,加速度也越大 C.物体的速度变化越快,则加速度越大 D.速度变化率越大则加速度越大
5.下列说法中正确的是(D)
A.物体运动的速度越大,加速度也一定越大 B.物体的加速度越大,它的速度一定越大 C.加速度就是“增加出来的速度”
D.加速度反映速度变化的快慢,与速度无关
6.对以a=2m/s2作匀加速直线运动的物体,下列说法正确的是 (AB)A.在任意1s内末速度比初速度大2m/s
B.第ns末的速度比第1s末的速度大2(n-1)m/sC.2s末速度是1s末速度的2倍
D.ns是的速度是(n/2)s时速度的2倍
7.下列说法中,正确的是(C)
A.物体在一条直线上运动,如果在相等的时间里变化的位移相等,则物体的运动就是匀变速直线运动
B.加速度大小不变的运动就是匀变速直线运动C.匀变速直线运动是加速度不变的运动
D.加速度方向不变的运动一定是匀变速直线运动
8.如图中,哪些图像表示物体做匀变速直线运动(ABC )
9.图为某物体做直线运动的速度—时间图像,请根据该图像判断下列说法正确的是( AC )
A.物体第3 s初的速度为零B.物体的加速度为-4 m/s2 C.物体做的是单向直线运动D.物体运动的前5 s内的位移为26 m
10.某运动的物体在6 s内的`v-t图像如图所示。在0—2 s内,物体的位移是___6m_______,加速度是______________;在2—5 s内,物体的位移是______________,加速度是______________;在5—6 s内,物体的位移是______________,加速度是______________。 6 m 3 m/s2 18 m 0 3 m -6 m/s2
11.如图所示v-t图象,表示质点做______运动,它的初速度为______,加速度为______,前20s内的加速度是______,第30s末的加速度_______。
(匀减速直线,30m/s,-1m/s2,-1m/s2, -1m/s2)
12.一质点做直线运动的v-t图像如图所示。质点在0~1s内做 运动,加速度为 m/s2;在1~3s内,质点做加速度为2;在3~4s内质点做运动,加速度为m/s2;在1~4s内质点做运动,加速度为
m/s2;
匀加速直线、4、匀减速直线、-2、反方向匀加速直线运动、-2、匀变速直线、-2;
13.做匀减速直线运动的物体,10s内速度由20m/s减为5m/s.求10s内物体的速度变化和加速度.
加速度的大小为1.5m/s2,a为负值表示加速度的方向与初速度的方向相反.
14.计算下列运动中的物体的加速度
(1)某飞机的起飞速度是50m/s,由于其地面跑道的限制,要求飞机在8S内离开跑道,求飞机起飞时的最小加速度.
(2)一辆汽车正以54km/h的速度行驶,因发生紧急情况关闭油门,刹车后做匀减速直线运动,经5S停止. 解6.25m/s2 -3m/s2式中负号表示加速度方向与初速度方向相反.
篇4:高一物理加速度课件
知识与技能
1.理解速度变化量和向心加速度的概念,
2.知道向心加速度和线速度、角速度的关系式.
3.能够运用向心加速度公式求解有关问题.
过程与方法
体会速度变化量的处理特点,体验向心加速度的导出过程,领会推导过程中用到的物理方法,教师启发、引导.学生自主阅读、思考,讨论、交流学习成果.
情感、与价值观
培养学生思维能力和分析问题的能力,培养学生探究问题的热情,乐于学习的品质.特别是做一做的实施,要通过教师的引导让学生体会成功的喜悦.
教学
重点理解匀速圆周运动中加速度的产生原因,掌握向心加速度的确定方法和计算公式.
教学
难点向心加速度方向的确定过程和向心加速度公式的推导与应用.
学法
指导自主阅读、合作探究、精讲精练、
教学
准备用细线拴住的小球
教学
设想预习导学学生初步了解本节内容合作探究突出重点,突破难点典型例题分析巩固知识达标提升
通过前面的学习,我们已经知道,做曲线运动的物体速度一定是变化的.即使是我们上一堂课研究的匀速圆周运动,其方向仍在不断变化着.换句话说,做曲线运动的物体,一定有加速度.圆周运动是曲线运动,那么做圆周运动的物体,加速度的大小和方向如伺寒确定呢?
教 学 过 程
师 生 互 动补充内容或错题订正
任务一 预习导学
(认真阅读教材p13-p15,独立完成下列问题)
1、请同学们看两例:
(1)图1中的地球受到什么力的作用?这个力可能沿什么方向?
(2)图2中的小球受到几个力的作用?这几个力的合力沿什么方向?
2、请同学们再举出几个类似的做圆周运动的实例,并就刚才讨论的类似问题进行说明.
3、做匀速圆周运动的物体所受的力或合外力指向圆心,所以物体的加速度也指向圆心.在理论上,分析速度方向的变化,可以得出结论:任何做匀速圆周运动的物体的加速度方向都指向
4、进一步的分析表明,由a=△v/△可以导出向心加速度大小的表达式:
aN= , aN=
任务二 合作探究
1、速度变化量
请在图中标出速度变化量△v
2、向心加速度方向理论分析
(请同学们阅读教材p18页做一做栏目,并思考以下问题:)
(1)在A、B两点画速度矢量vA和vB时,要注意什么?
(2)将vA的起点移到B点时要注意什么?
(3)如何画出质点由A点运动到B点时速度的变化量△V?
(4)△v/△t表示的意义是什么?
(5)△v与圆的半径平行吗?在什么条件下.△v与圆的半径平行?
(6)△v的延长线并不通过圆心,为什么说这个加速度是指向圆心的?
3、学生思考并完成课本第19页思考与讨论栏目中提出的问题:
从公式an= v2/r看,向心加速度an与圆周运动的半径r成反比;从公式an=2r看,向心加速度an与半径r成正比。这两个结论是否矛盾?请从以下两个角度讨论这个问题。
(1)在y=kx这个关系中,说y与x成正比,前提是什么?
(2)自行车的大齿轮、小齿轮、后轮三个轮子的半径不一样,它们的边缘有三个点A、B、C,其中哪些点向心加速度的关系是用于向心加速度与半径成正比,哪些点是用于向心加速度与半径成反比?作出解释
例:如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S离转动轴的距离是半径的1/3。当大轮边缘上的P点的向心加速度是0.12m/S2时,大轮上的S点和小轮边缘上的Q点的向心加速度各为多大?
练习:如图,A、B、C三轮半径之比为3∶2∶1,A与B共轴,B与C用不打滑的皮带轮传动,则A、B、C三轮的轮缘上各点的线速度大小之比为______,角速度大小之比为________,转动的向心加速度大小之比为__________.
任务三 达标提升
1.下列关于向心加速度的说法中,正确的是( )
A.向心加速度的方向始终与速度的方向垂直
B.向心加速度的方向保持不变
C.在匀速圆周运动中,向心加速度是恒定的
D.在匀速圆周运动中,向心加速度的大小不断变化
2.甲、乙两个物体都做匀速圆周运动.转动半径比为3:4,在相同的时间里甲转过60圈时,乙转过45圈,则它们所受的向心加速度之比为( )
A.3:43 C.4:9 D.9:16
3.如图的皮带传动装置中 ( )
A.A点与C点的角速度相同,所以向心加速度也相同
B.A点半径比C点半径大,所以A点向心加速度大于C点向心加速度
C.A点与B点的线速度相同,所以向心加速度相同
D.B点与C点的半径相同,所以向心加速度也相同
4.关于做匀速圆周运动的物体的线速度、角速度、周期与向心加速度的关系,下列说法中正确的是
A.角速度大的向心加速度一定大
B.线速度大的向心加速度一定大
C.线速度与角速度乘积大的向心加速度一定大
D.周期小的向心加速度一定大
5、(双选) 如图所示为质点P、Q做匀速圆周运动的向心加速度随半径变化的图线.表示质点P的图线是双曲线,表示质点Q的图线是过原点的一条直线.由图线可知( )
A.质点P的线速度大小不变?
B.质点P的角速度大小不变?
C.质点Q的角速度不变??
D.质点Q的线速度大小不变?
6、于向心加速度的物理意义,下列说法正确的是( )
A它描述的是线速度方向变化的快慢?B.它描述的是期变化快慢
C它是线速度大小变化的快慢?D.它描述的是角速度变化的快慢?
7、某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮的角速度为,则丙轮边缘上某点的向心加速度为()
A. B.
C. D.
8、如图所示传送装置中,三个轮的半径分别为R,2R,4R;则图中A,B,C各点的线速度之比为 ;角速度之比为 ;加速度之比为 。
篇5:高一物理圆周运动课件
高一物理圆周运动课件
高一物理圆周运动课件
【教学目标】
(一)知识与技能
1、理解线速度、角速度、转速、周期等概念,会对它们进行定量的计算。
2、知道线速度与角速度的定义,知道线速度与周期,角速度与周期的关系。
3、理解匀速圆周运动的概念和特点。
(二)过程与方法
1、学会用比值定义法来描述物理量。
2、会用有关公式求简单的线速度、角速度的大小。
(三)情感、态度与价值观
通过本节知识,了解匀速圆周运动的实际应用意义。
【学情分析】
高中一年级学生拥有强烈的好奇心,初步具有自主、合作、探究学习的能力。圆周运动这节的概念比较多,也比较抽象, 因此,教师在教学过程中要注意引导学生,从易到难,逐渐培养学生的学习兴趣。
【重点难点】
教学重点
线速度、角速度的概念和它们之间的关系
教学难点
1、线速度、角速度的物理意义
2、常见传动装置的应用。
【教学过程】
活动1【模型导入】让学生观察教室吊扇转动时扇尖的运动。
活动2【活动】创设情境引入描述圆周运动快慢的物理量让学生观察吊扇,的中点处,提问A、B两点哪点运动的更快呢?
学生回答:B点比A点运动的快。因为相同时间B点运动的弧长较长。
A点和B点运动的一样快。因为相同时间A、B点转过的'角度一样。
教师总结:前两种答案都很有道理,所以这两种答案都是对的。只是从不同的角度描述了圆周运动。
活动3【导入】投影阅读提纲
1、结合阅读提纲阅读课本内容。
2、学生归纳知识点。
3、交流讨论,查缺补漏。
活动4【讲授】ppt:线速度
1)、定义:质点做圆周运动通过的弧长 Δl 和所用时间 Δt 的比值叫做线速度。
2)大小:V=△S/△t
活动5【导入】ppt:角速度
1)、定义:质点所在的半径转过圆心角Δθ和所用时间Δt的比值叫做角速度。
活动6【活动】线速度和角速度有什么联系 线速度和角速度关系的推导
活动7【导入】ppt:周期 ,频率,转速 周期 ,频率,转速的关系
活动8【练习】ppt:【练习1】
1. 温哥华冬奥会双人滑比赛中,申雪、赵宏博拿到中国花样滑冰史上首枚冬奥会金牌.如图 5-4-2 所示,赵宏博(男)以自己为转轴拉着申雪(女)做匀速圆周运动,转速为 30 r/min.申雪的脚到转轴的距离为 1.6 m,求:
(1)申雪做匀速圆周运动的角速度;
(2)申雪的脚运动的速度大小.
活动9【导入】ppt:【练习2】
2.已知某一机械秒表的分针和秒针长(指转动轴到针尖的距离)分别为 1 cm 和 1.3 cm,它正常转动时可视为匀速转动,试求:
(1)分针和秒针的周期和转速;
(2)分针和秒针针尖的线速度大小;
(3)分针和秒针的角速度大小.
活动10【导入】ppt:
已知ABC三点的半径之比为
求ABC三点的角速度和线速度之比
活动11【讲授】ppt:.总结:传动装置中各物理量间的关系
1.共轴转动(如图 5-4-3 所示):
(1)运动特点:转动方向相同, 即都逆时针转动或都顺时针转动.
(2)定量关系:A 点和 B 点转动的周期相同、角速度相同
活动12【练习】ppt:
3.如图 5-4-6 所示的传动装置中,B、C 两轮固定
在一起绕同一转轴转动,A、B 两轮用皮带传动,三轮半径关系
为 rA=rC=2rB.若皮带不打滑,求 A、B、C 轮边缘上的 a、b、c 三点的角速度之比和线速度之比.
活动13【练习】ppt:
(双选, 年佛山一中期中)如图 5-4-7 所示为一皮带传动装置,右轮半径为 r,a 为它边缘上一点;左侧是一轮轴,大轮半径为 4r,小轮半径为 2r,b 点在小轮上,到小轮中心的距离为 r,c 点和 d 点分别位于小轮和大轮的边缘上.若传动过程中皮带不打滑,则
A.a 点和 b 点的线速度之比为 2∶1
B.a 点和 c 点的角速度之比为 1∶2
C.a 点和 d 点的线速度之比为 2∶1
D.b 点和 d 点的线速度之比为 1∶4
篇6:高一物理功率课件
高一物理功率课件
一、教学目标
1、知道功率是表示做功快慢的物理量。
2、掌握功率的定义和定义式P=W/t;知道在国际单位制中,功率的单位是瓦特(W)。
3、知道公式P=Fv的物理意义。
二、重点、难点分析
1.功率的概念、功率的物理意义是本节的重点内容,如果学生能懂得做功快慢表示的是能量转化的快慢,自然能感悟出功率实际上是描述能量转化快慢的物理量。
2.瞬时功率的概念学生较难理解,这是难点。学生往往认为,在某瞬时物体没有位移就没有做功问题,更谈不上功率了。如果学生没有认识到功率是描述能量转化快慢的物理量,这个难点就不易突破,因此,在前面讲清楚功率的物理意义很有必要,它是理解瞬时功率概念和物理意义的基础。
三、主要教学过程
(一)引入课题
首先以提问方式复习上一节所学习的主要内容,重点是功的概念和功的物理意义.
然后提出力对物体做功的实际问题中,有做功快慢之分,物理学中又是如何来描述的?这节课我们就来研究这个问题.
(二)教学过程
1、功率
思考:力F1对甲物体做功为W1,所用时间为t1;力F2对乙物体做功为W2,所用时间为t2,在下列条件下,哪个力做功快?
A.W1=W2,t1>t2; B.W1=W2,t1<t2;
C.W1>W2,t 1=t 2; D.W1<W2,t1=t2.
上述条件下,哪个力做功快的问题学生都能作出判断,其实都是根据W/t这一比值进行分析判断的.让学生把这个意思说出来,然后总结并板书如下:
功率是描述做功快慢的物理量.
功和完成这些功所用的时间之比,叫做功率.
如果用W表示功,t表示完成这些功所用的时间,P表示功率,则:P=W/t
明确告诉学生上式即为功率的定义式,然后说明P的单位,W用J、t用s作单位,P的单位为J/s,称为瓦特,符号为W.最后分析并说明功率是标量.
2、平均功率与瞬时功率
举例:一个质量是1.0kg的物体,从地面上方20m高处开始做自由落体运动,第1s时间内下落的位移是多少?(与学生一块算出是5m,g取10m/s2)这1s内重力对物体做多少功?(与学生一起算出W1=50J)第2s时间内物体下落的位移是多少?(15m)这1s内重力对物体做多少功?(W2=150J)前1s和后1s重力对物体做功的功率各是多大?(P1=50W,P2=150W)这2s时间内重力对物体做功的功率是多大?(P=100W)
指出即使是同一个力对物体做功,在不同时间内做功的功率也可能是有变化的'.因而,用P=W/t求得的功率只能反映t时间内做功的快慢,只具有平均的意义.板书如下:
(1)平均功率:P=W/t
(2)瞬时功率
为了比较细致地表示出每时每刻的做功快慢,引入了瞬时功率的概念,即瞬时功率是表示某个瞬时做功快慢的物理量.
提出瞬时功率如何计算的问题后,作如下推导:一段较短时间内的平均功率可以写成如下公式:
P=W/t= Fs/ t, 而s/t=v 所以:P= Fv
当t值足够小时,v就表示某一时刻的瞬时速度,所以这时P就表示该时刻的瞬时功率.
因此 P=Fv 就是瞬时功率计算公式
讨论:
篇7:高一物理弹力课件
高一物理弹力课件
高一物理弹力课件
【教材分析】
1、形变:物体发生形变是力作用的结果,形变方式有形状和体积的改变,任何物体只要受到力的作用必发生形变,只不过有些形变程度很小,只有通过仪器及实验手段才能明显显示出来,在力的作用下不发生形变的物体是不存在的。(]形变的种类有两种,一种是弹性形变,一种是非弹性形变。
2、弹力:弹力是接触力,物体间产生弹力,两物体必须接触且发生弹性形变,这两个条件缺一不可。两接触物体是否发生弹性形变,可用假设法来判断,若假设接触的物体间有弹性形变,则有弹力作用,若物体所处的状态与事实不相符,则假设不成立,无弹力作用。
【教学目标】
1、知识与技能
①.知道什么是弹力及弹力产生的条件;
②.知道压力、支持力、绳的拉力都是弹力,能在力的示意图中正确画出力的方向;
③.知道弹力大小的决定因素及胡克定律。
2、过程与方法
①.提高在实际问题中确定弹力方向的能力;
②.通过探究弹力的存在,是学生体会假设推理法解决问题的巧妙。
3、情感态度与价值观
观察和了解形变的有趣现象,感受自然界的奥秘,培养学生对科学的好奇心和求知欲。
【教学重难点】
1、重点:弹力产生的条件及弹力方向的判定,胡克定律的内容及应用。
2、难点:接触的物体是否发生形变及弹力方向的确定。
【授课类型】
新授课
【主要教学方法】
讲授法
【直观教具与教学媒体】
黑板、粉笔
【课时安排】
1课时
【教学过程】
一、复习引入
问题1:力的定义是什么?
——物体与物体之间的相互作用。
问题2:力的作用效果是什么?
——使物体运动状态发生改变,使物体形状发生改变。
问题3:能够举出一些外力使物体的形状发生改变的例子?
——压缩弹簧、挤压海绵、用手弯曲直尺、小鸟压弯枝头、拉动橡皮筋等。[]
二、新课教学
(一)弹性形变和弹力
问题4:以上例子中各物体的共同特点是什么?
——物体的形状或体积都发生了改变。
结论:物体在力的作用下形状或体积的改变叫做形变。
上面所举的例子中,在外力的作用下物体的形变都非常明显,用肉眼可以看的很清楚,但有些形变非常微小,无法看清。例如书本放在桌面上,桌面发生的形变;人站在地面上,地面发生的形变。这些形变我们需要通过仪器及实验手段来判断。任何物体在受到外力作用时都会发生形变,只不过形变有大有小。
演示:①.用力挤压海绵,海绵发生形变,松手后恢复原状;
②.用力拉橡皮筋,橡皮筋断裂,无法恢复原状。
总结:物体发生形变,在撤去外力后,有些能恢复原状,如例子中的海绵,这种形变叫做弹性形变。而有些物体由于形变过大,超过了一定的限度,从而不能恢复到原状,这种形变叫做非弹性形变,这个限度叫做弹性限度。任何物体的形变如果超过了弹性限度,将不能恢复到原状。
演示:①.被弯曲的直尺上放一粉笔头,放手后粉笔头被弹起;
②.被拉伸的橡皮筋上放一小纸团,放手后小纸团被弹飞。
问题5:为什么粉笔头、小纸团会被弹起?
引导学生回答:形变的.物体要恢复原状,会对和它接触的物体产生力的作用,就被弹起。我们把这个力叫做弹力。
问题6:如果粉笔头、小纸团与形变的物体不接触,会受到弹力吗?
引导学生回答:不接触一定不会受到弹力。
总结:弹力的产生需要两个条件,直接接触并发生形变。
(二)几种弹力
学习了弹力的定义,我们通过几种常见的弹力进一步来研究弹力的问题。 问题1:课本放在桌面上,根据我们以前所学的知识,课本和桌面之间的相互作用力是什么呢?
——课本多桌面的压力和桌面对课本的支持力。
问题2:它们是弹力吗?为什么?
——它们是弹力,因为它们符合弹力产生的条件,接触并且发生形变。
教师精讲:放在水平桌面上的书,由于重力作用而压迫桌面,使书和桌面同时发生微小的形变。书要恢复原状,对桌面产生垂直于桌面向下的弹力F1,这就是书对桌面的压力;桌面要恢复原状,对书产生垂直于书面向上的弹力F2,这就是桌面对书的支持力。
篇8:高一物理摩擦力课件
知识目标
1、知道摩擦力产生的条件;
2、能在简单的问题中,根据物体的运动状态,判断静摩擦力的有无、大小和方向;知道存在着最大静摩擦力;
3、掌握动摩擦因数,会在具体问题中计算滑动摩擦力,掌握判定摩擦力方向的方法;
4、知道影响动摩擦因数的因素;
能力目标
1、通过观察演示实验,概括出摩擦力产生的条件以及摩擦力的特点,培养学生的观察、概括能力.通过静摩擦力与滑动摩擦力的区别对比,培养学生的分析综合能力.
情感目标
渗透物理方法的教育.在分析物体所受摩擦力时,突出主要矛盾,忽略次要因素及无关因素,总结出摩擦力产生的条件和规律.
教学建议
一、基本知识技能:
1、两个互相接触且有相对滑动或的物体,在它们的接触面上会产生阻碍相对运动的摩擦力,称为滑动摩擦力;
2、两个物体相互接触,当有相对滑动的趋势,但又保持相对静止状态时,在它们接触面上出现的阻碍相对滑动的作用力
3、两个物体间的滑动摩擦力的大小跟这两个物体接触面间的压力大小成正比.
4、动摩擦因数的大小跟相互接触的两个物体的材料有关.
5、摩擦力的方向与接触面相切,并且跟物体相对运动或相对运动趋势相反.
6、静摩擦力存在最大值——最大静摩擦力.
二、重点难点分析:
1、本节课的内容分滑动摩擦力和静摩擦力两部分.重点是摩擦力产生的条件、特性和规律,通过演示实验得出关系.
2、难点是在理解滑动摩擦力计算公式时,尤其是理解水平面上运动物体受到的摩擦力时,学生往往直接将重力大小认为是压力大小,而没有分析具体情况.
教法建议
一、讲解摩擦力有关概念的教法建议
介绍滑动摩擦力和静摩擦力时,从基本的事实出发,利用二力平衡的知识使学生接受摩擦力的存在.由于摩擦力的内容是本节的难点,所以在讲解时不要求“一步到位”,关于摩擦力的概念可以通过实验、学生讨论来理解.
1、可以让学生找出生活和生产中利用摩擦力的例子;
2、让学生思考讨论,如:
(1)、摩擦力一定都是阻力;
(2)、静止的物体一定受到静摩擦力;
(3)、运动的物体不可能受到静摩擦力;
主要强调:摩擦力是接触力,摩擦力是阻碍物体间的相对运动或相对运动趋势的,但不一定阻碍物体的运动,即在运动中也可以充当动力,如传送带的例子.
二、有关讲解摩擦力的大小与什么因素有关的教法建议
1、滑动摩擦力的大小,跟相互接触物体材料及其表面的光滑程度有关;跟物体间的正压力有关;但和接触面积大小无关.注意正压力的解释.
不是表面越光滑,动摩擦因数越小.实际上,当两物体表面很粗糙时,由于接触面上交错齿合,会使动摩擦因数很大;对于非常光滑的表面,尤其是非常清洁的表面,由于分子力起主要作用,所以动摩擦因数更大,表面越光洁,动摩擦因数越大.但在力学中,常称“物体表面是光滑的”这是忽略物体之间的摩擦力的一种提法,实际上是一种理想化模型,与上面叙述毫无关系.
N为物体所受的正压力.摩擦力的大小变化随着外力的变化关系如图:滑动摩擦力的大小小于最大静摩擦力,但一般情况下认为两者相等。
第四节 摩擦力
课时安排:
1课时
教学方法:
设问法、讲解法相结合
教学过程设计:
一、复习提问
问题1、目前我们学了哪几种力?它们产生的原因是什么?它们大小方向如何确定?
教师总结前几节所学习内容,为方便知识体系的理解,在分析力时可把握如下几个过程:
1、力产生的原因;
2、力的大小、方向.
二、新课教学
(一)、引入新课
力学中常见的三种力是重力、弹力、摩擦力.对于每一种力,都需要知道它的产生条件、会计算它的大小、能判断它的方向.前面我们为你学习了其中两种力:重力和弹力.这一节我们学习第三种力——摩擦力.摩擦力是三种力种比较难掌握.
首先请学生分析图示(如图所示),教师可以演示这个实验,B物体用钩码代替:
提问1:木块A受几个力?
答案:重力、支持力、拉力、摩擦力
提问2:拉力与摩擦力是什么关系?去掉B,摩擦力是否存在?
答案:一对平衡力.不存在,即摩擦力为0.
提问3:摩擦力起什么作用?
答案:在B的作用下,物体A要向右运动,有向右运动的趋势.摩擦力就是阻碍A物体向右运动,从而使A物体与支持面保持相对静止.
(二)静摩擦力的讲解:
1、概念总结:
(1)、静摩擦力:物体间保持相对静止,但有相对运动趋势时的摩擦力.
(2)、静摩擦力的大小和方向:在上述实验中,不断增加钩码,使拉力增大,可以分析出:静摩擦力也是增大.但当增大到某一值时,A物体开始滑动了.A物体将要滑动的瞬间
2、例题讲解:
握住水杯,使水杯在空中保持不动.让学生讨论水杯是否受摩檫力.若受,则其大小、方向怎样?
答案:水杯受到重力、手的弹力、手的静摩擦力作用.由于水杯静止在空中,因此静摩擦力大小与重力大小相等.
3、继续演示实验,在前述实验中,继续增加钩码个数,木块开始缓慢匀速滑动后,开始提问.
提问4:木块此时受几个力?
答案:重力、支持力、拉力、摩擦力.
提问5:此时摩擦力起到什么作用?
答案:阻碍物体运动.
教师总结:
(三)滑动摩擦力的讲解
1、滑动摩擦力:物体间相对滑动时产生的摩擦力.
2、滑动摩擦力的方向:与物体相对运动的方向相反.
继续实验,向A木块施加压力(可以添加砝码),接着再愿基础上添加钩码,让木块又开始缓慢滑动.让学生讨论比较两次滑动摩擦力的大小.
(四)讲解例题,可以参考书上的例题.
三、小结
四、组织学生讨论课后习题
五、布置作业
探究活动
课题1:
内容:通过对日常生活的观察和研究,写出对于我们日常活动密切相关的摩擦的认识。
可以选择的课题建议:
1、“如果没有摩擦力,世界将会怎样”,关于本课题,可以让学生查找一些类似的文章并写出感想……,对于本文的写作形式可以不加限制。
2、“关于摩擦力在生活、生产中的作用”,本课题具有专题性质,可以针对某一方面详细叙述,如“摩擦在体育运动中”;“摩擦在我们的学习生活中”等等。
课题2:
内容:通过实验研究影响滑动摩擦力大小有关的因素。
1、实验验证影响滑动摩擦力大小的因素
由于教师在课堂上已经详细的讲述了影响滑动摩擦力大小的因素,因此学生在用实验研究滑动摩擦力时往往对实验的原理忽略,而注重实验的过程和实验的准确性,因此可以要求学生自己提出实验方案并说明为什么要如此设计,在教师指导下独立完成实验后写出详细的实验报告。
2、测量滑动摩擦力
相对与“实验验证影响滑动摩擦力大小的因素”实验,本实验是其延续,如果说实验1是提出了研究问题的方向,那么实验2就是针对具体细节的研究方案。建议学生自己提出实验方案,在教师指导下独立完成实验后写出详细的实验报告。
篇9:高一物理摩擦力课件
学习目标:
1.知道滑动摩擦产生的条件,会正确判断滑动摩擦力的方向。
2.会用公式F=μFN计算滑动摩擦力的大小,知道影响动摩擦因数的大小因素。
3.知道静摩擦力的产生条件,能判断静摩擦力的有无以及大小和方向。
4.理解最大静摩擦力。能根据二力平衡条件确定静摩擦力的大小。
学习重点:1.滑动摩擦力产生的条件及规律,并会用F摩=μFN解决具体问题。
2.静摩擦力产生的条件及规律,正确理解最大静摩擦力的概念。
学习难点:
1.正压力FN的确定。
2.静摩擦力的有无、大小的判定。
主要内容:
一、摩擦力
一个物体在另一个物体上滑动时,或者在另一个物体上有滑动的趋势时我们会感到它们之间有相互阻碍的作用,这就是摩擦,这种情况下产生力我们就称为摩擦力。固体、液体、气体的接触面上都会有摩擦作用。
二、滑动摩擦力
1.产生:一个物体在另一个物体表面上相对于另一个物体发生相对滑动时,另一个物体阻碍它相对滑动的力称为滑动摩擦力。
2.产生条件:相互接触、相互挤压、相对运动、表面粗糙。
①两个物体直接接触、相互挤压有弹力产生。
摩擦力与弹力一样属接触作用力,但两个物体直接接触并不挤压就不会出现摩擦力。挤压的效果是有压力产生。压力就是一个物体对另一个物体表面的垂直作用力,也叫正压力,压力属弹力,可依上一节有关弹力的知识判断有无压力产生。
②接触面粗糙。当一个物体沿另一物体表面滑动时,接触面粗糙,各凹凸不平的部分互相啮合,形成阻碍相对运动的力,即为摩擦力。凡题中写明“接触面光滑”、“光滑小球”等,统统不考虑摩擦力(“光滑”是一个理想化模型)。
③接触面上发生相对运动。
特别注意:“相对运动”与“物体运动”不是同一概念,“相对运动”是指受力物体相对于施力物体(以施力物体为参照物)的位置发生了改变;而“物体的运动”一般指物体相对地面的位置发生了改变。
3.方向:总与接触面相切,且与相对运动方向相反。
这里的“相对”是指相互接触发生摩擦的物体,而不是相对别的物体。滑动摩擦力的方向跟物体的相对运动的方向相反,但并非一定与物体的运动方向相反。
4.大小:与压力成正比F=μFN
①压力FN与重力G是两种不同性质的力,它们在大小上可以相等,也可以不等,也可以毫无关系,用力将物块压在竖直墙上且让物块沿墙面下滑,物块与墙面间的压力就与物块重力无关,不要一提到压力,就联想到放在水平地面上的物体,认为物体对支承面的压力的大小一定等于物体的重力。
②μ是比例常数,称为动摩擦因数,没有单位,只有大小,数值与相互接触的______、接触面的______程度有关。在通常情况下,μ<1。
③计算公式表明:滑动摩擦力F的大小只由μ和FN共同决定,跟物体的运动情况、接触面的大小等无关。
5.滑动摩擦力的作用点:在两个物体的接触面上的受力物体上。
问题:1.相对运动和运动有什么区别?请举例说明。
2.压力FN的值一定等于物体的重力吗?请举例说明。
3.滑动摩擦力的大小与物体间的接触面积有关吗?
4.滑动摩擦力的'大小跟物体间相对运动的速度有关吗?
三、静摩擦力
1.产生:两个物体满足产生摩擦力的条件,有相对运动趋势时,物体间所产生的阻碍相对运动趋势的力叫静摩擦力。
2.产生条件:
①两物体直接接触、相互挤压有弹力产生;
②接触面粗糙;
③两物体保持相对静止但有相对运动趋势。
所谓“相对运动趋势”,就是说假设没有静摩擦力的存在,物体间就会发生相对运动。比如物体静止在斜面上就是由于有静摩擦力存在;如果接触面光滑.没有静摩擦力,则由于重力的作用,物体会沿斜面下滑。
跟滑动摩擦力条件的区别是:
3.大小:两物体间实际发生的静摩擦力F在零和最大静摩擦力Fmax之间
实际大小可根据二力平衡条件判断。
4.方向:总跟接触面相切,与相对运动趋势相反
①所谓“相对运动趋势的方向”,是指假设接触面光滑时,物体将要发生的相对运动的方向。比如物体静止在粗糙斜面上,假没没有摩擦,物体将沿斜面下滑,即物体静止时相对(斜面)运动趋势的方向是沿斜面向下,则物体所受静摩擦力的方向沿斜面向上,与物体相对运动趋势的方向相反。
②判断静摩擦力的方向可用假设法。其操作程序是:
A.选研究对象----受静摩擦力作用的物体;
B.选参照物体----与研究对象直接接触且施加静摩擦力的物体;
C.假设接触面光滑,找出研究对象相对参照物体的运动方向即相对运动趋势的方向
D.确定静摩擦力的方向一一与相对运动趋势的方向相反
③静摩擦力的方向与物体相对运动趋势的方向相反,但并非一定与物体的运动方向相反。
5.静摩擦力的作用点:在两物体的接触面受力物体上。
【例一】下述关于静摩擦力的说法正确的是:
A.静摩擦力的方向总是与物体运动方向相反;
B.静摩擦力的大小与物体的正压力成正比;
C.静摩擦力只能在物体静止时产生;
D.静摩擦力的方向与接触物体相对运动的趋势相反.
D
【例二】用水平推力F把重为G的黑板擦紧压在竖直的墙面上静止不动,不计手指与黑板擦之间的摩擦力,当把推力增加到2F时,黑板擦所受的摩擦力大小是原来的几倍?
摩擦力没变,一直等于重力.
四、滑动摩擦力和静摩擦力的比较
滑动摩擦力静摩擦力符号及单位
产生原因表面粗糙有挤压作用的物体间发生相对运动时表面粗糙有挤压作用的物体间具有相对运动趋势时摩擦力用f表示
单位:牛顿
简称:牛
符号:N
大小f=μN始终与外力沿着接触面的分量相等
方向与相对运动方向相反与相对运动趋势相反
问题:1.摩擦力一定是阻力吗?
2.静摩擦力的大小与正压力成正比吗?
3.最大静摩擦力等于滑动摩擦力吗?
课堂训练:
1.下列关于摩擦力的说法中错误的是()
A.两个相对静止物体间一定有静摩擦力作用.B.受静摩擦力作用的物体一定是静止的.
C.静摩擦力对物体总是阻力.D.有摩擦力一定有弹力
2.下列说法中不正确的是()
A.物体越重,使它滑动时的摩擦力越大,所以摩擦力与物重成正比.
B.由μ=f/N可知,动摩擦因数与滑动摩擦力成正比,与正压力成反比.
C.摩擦力的方向总是与物体的运动方向相反.
D.摩擦力总是对物体的运动起阻碍作用.
3.如图所示,一个重G=200N的物体,在粗糙水平面上向左运动,物体和水平面间的摩擦因数μ=0.1,同时物体还受到大小为10N、方向向右的水平力F作用,则水平面对物体的摩擦力的大小和方向是()
A.大小是10N,方向向左.B.大小是10N,方向向右.
C.大小是20N,方向向左.D.大小是20N,方向向右.
4.粗糙的水平面上叠放着A和B两个物体,A和B间的接触面也是粗糙的,如果用水平力F拉B,而B仍保持静止,则此时()
A.B和地面间的静摩擦力等于F,B和A间的静摩擦力也等于F.
B.B和地面间的静摩擦力等于F,B和A间的静摩擦力等于零.
C.B和地面间的静摩擦力等于零,B和A间的静摩擦力也等于零.
D.B和地面间的静摩擦力等于零,B和A间的静摩擦力等于F.
答案:1.ABC2.ABCD3.D4.B
阅读材料:从经典力学到相对论的发展
在以牛顿运动定律为基础的经典力学中,空间间隔(长度)S、时间t和质量m这三个物理量都与物体的运动速度无关。一根尺静止时这样长,当它运动时还是这样长;一只钟不论处于静止状态还是处于运动状态,其快慢保持不变;一个物体静止时的质量与它运动时的质量一样。这就是经典力学的绝对时空观。到了十九世纪末,面对高速运动的微观粒子发生的现象,经典力学遇到了困难。在新事物面前,爱因斯坦打破了传统的绝对时空观,于19发表了题为《论运动物体的电动力学》的论文,提出了狭义相对性原理和光速不变原理,创建了狭义相对论。狭义相对论指出:长度、时间和质量都是随运动速度变化的。长度、时间和质量随速度变化的关系可用下列方程来表示:,(通称“尺缩效应”)、(通称“钟慢效应”)、(通称“质—速关系”)
上列各式里的v是物体运动的速度,C是真空中的光速,l0和l分别为在相对静止和运动系统中沿速度v的方向测得的物体长度;t0和t分别为在相对静止和运动系统中测得的时间;m0和m分别为在相对静止和运动系统中测得的物体质量。
但是,当宏观物体的运动速度远小于光速时(v<
继狭义相对论之后,19爱因斯坦又建立了广义相对论,指出空间——时间不可能离开物质而独立存在,空间的结构和性质取决于物体的分布,使人类对于时间、空间和引力现象的认识大大深化了。“狭义相对论”和“广义相对论”统称为相对论。
篇10:高一新课标物理课件
一、教学目标
1、在学习机械能守恒定律的基础上,研究有重力、弹簧弹力以外其它力做功的情况,学习处理这类问题的方法。
2、对功和能及其关系的理解和认识是本章教学的重点内容,本节教学是本章教学内容的总结。通过本节教学使学生更加深入理解功和能的关系,明确物体机械能变化的规律,并能应用它处理有关问题。
3、通过本节教学,使学生能更加全面、深入认识功和能的关系,为学生今后能够运用功和能的观点分析热学、电学知识,为学生更好理解自然界中另一重要规律——能的转化和守恒定律打下基础。
二、重点、难点分析
1、重点是使学生认识和理解物体机械能变化的规律,掌握应用这一规律解决问题的方法。在此基础上,深入理解和认识功和能的关系。
2、本节教学实质是渗透功能原理的观点,在教学中不必出现功能原理的名称。功能原理内容与动能定理的区别和联系是本节教学的难点,要解决这一难点问题,必须使学生对“功是能量转化的量度”的认识,从笼统、肤浅地了解深入到十分明确认识“某种形式能的变化,用什么力做功去量度”。
3、对功、能概念及其关系的认识和理解,不仅是本节、本章教学的重点和难点,也是中学物理教学的重点和难点之一。通过本节教学应使学生认识到,在今后的学习中还将不断对上述问题作进一步的分析和认识。
三、教具
投影仪、投影片等。
四、主要教学过程
(一)引入新课
结合复习机械能守恒定律引入新课。
提出问题:
1、机械能守恒定律的内容及物体机械能守恒的条件各是什么?
评价学生回答后,教师进一步提问引导学生思考。
2、如果有重力、弹簧弹力以外其它力对物体做功,物体的机械能如何变化?物体机械能的变化和哪些力做功有关呢?物体机械能变化的规律是什么呢?
教师提出问题之后引起学生的注意,并不要求学生回答。在此基础上教师明确指出:
机械能守恒是有条件的.。大量现象表明,许多物体的机械能是不守恒的。例如从车站开出的车辆、起飞或降落的飞机、打入木块的子弹等等。
分析上述物体机械能不守恒的原因:从车站开出的车辆机械能增加,是由于牵引力(重力、弹力以外的力)对车辆做正功;射入木块后子弹的机械能减少,是由于阻力对子弹做负功。
重力和弹力以外的其它力对物体做功和物体机械能变化有什么关系,是本节要研究的中心问题。
(二)教学过程设计
提出问题:下面我们根据已掌握的动能定理和有关机械能的知识,分析物体机械能变化的规律。
1、物体机械能的变化
问题:质量m的小滑块受平行斜面向上拉力F作用,沿斜面从高度h1上升到高度h2处,其速度由v1增大到v2,如图所示,分析此过程中滑块机械能的变化与各力做功的关系。
引导学生根据动能定理进一步分析、探讨小滑块机械能变化与做功的关系。归纳学生分析,明确:
选取斜面底端所在平面为参考平面。根据动能定理∑W=ΔEk,有
由几何关系,有sinθL=h2-h1
即FL-fL=E2-E1=ΔE
引导学生理解上式的物理意义。在学生回答的基础上教师明确指出:
(1)有重力、弹簧弹力以外的其它力对物体做功,是使物体机械能发生变化的原因;
(2)重力和弹簧弹力以外其它力对物体所做功的代数和,等于物体机械能的变化量。这是物体机械能变化所遵循的基本规律。
2、对物体机械能变化规律的进一步认识
(1)物体机械能变化规律可以用公式表示为W外=E2-E1或W外=ΔE
其中W外表示除重力、弹簧弹力以外其它力做功的代数和,E1、E2分别表示物体初、末状态的机械能,ΔE表示物体机械能变化量。
(2)对W外=E2-E1进一步分析可知:
(i)当W外>0时,E2>E1,物体机械能增加;当W外<0时,E2
(ii)若W外=0,则E2=E1,即物体机械能守恒。由此可以看出,W外=E2-E1是包含了机械能守恒定律在内的、更加普遍的功和能关系的表达式。
(3)重力、弹簧弹力以外其它力做功的过程,其实质是其它形式的能与机械能相互转化的过程。
例1、质量4、0×103kg的汽车开上一山坡。汽车沿山坡每前进100m,其高度升高2m。上坡时汽车速度为5m/s,沿山坡行驶500m后速度变为10m/s。已知车行驶中所受阻力大小是车重的0、01倍,试求:(1)此过程中汽车所受牵引力做功多少?(2)汽车所受平均牵引力多大?取g=10m/s2。本题要求用物体机械能变化规律求解。
引导学生思考与分析:
(1)如何依据W外=E2-E1求解本题?应用该规律求解问题时应注意哪些问题?
(2)用W外=E2-E1求解本题,与应用动能定理∑W=Ek2-Ek1有什么区别?
归纳学生分析的结果,教师明确给出例题求解的主要过程:
取汽车开始时所在位置为参考平面,应用物体机械能变化规律W外=E2-E1解题时,要着重分析清楚重力、弹力以外其它力对物体所做的功,以及此过程中物体机械能的变化。这既是应用此规律解题的基本要求,也是与应用动能定理解题的重要区别。
例2、将一个小物体以100J的初动能从地面竖直向上抛出。物体向上运动经过某一位置P时,它的动能减少了80J,此时其重力势能增加了60J。已知物体在运动中所受空气阻力大小不变,求小物体返回地面时动能多大?
引导学生分析思考:
(1)运动过程中(包括上升和下落),什么力对小物体做功?做正功还是做负功?能否知道这些力对物体所做功的比例关系?
(2)小物体动能、重力势能以及机械能变化的关系如何?每一种形式能量的变化,应该用什么力所做的功量度?
归纳学生分析的结果,教师明确指出:
(1)运动过程中重力和阻力对小物体做功。
(2)小物体动能变化用重力、阻力做功的代数和量度;重力势能的变化用重力做功量度;机械能的变化用阻力做功量度。
(3)由于重力和阻力大小不变,在某一过程中各力做功的比例关系可以通过相应能量的变化求出。
(4)根据物体的机械能E=Ek+Ep,可以知道经过P点时,物体动能变化量大小ΔEk=80J,机械能变化量大小ΔE=20J。
例题求解主要过程:
上升到最高点时,物体机械能损失量为
由于物体所受阻力大小不变,下落过程中物体损失的机械能与上升过程相同,因此下落返回地面时,物体的动能大小为
E′k=Ek0-2ΔE′=50J
本例题小结:
通过本例题分析,应该对功和能量变化有更具体的认识,同时应注意学习综合运用动能定理和物体机械能变化规律解决问题的方法。
思考题(留给学生课后练习):
(1)运动中物体所受阻力是其重力的几分之几?
(2)物体经过P点后还能上升多高?是前一段高度的几分之几?
五、课堂小结
本小结既是本节课的第3项内容,也是本章的小结。
3、功和能
(1)功和能是不同的物理量。能是表征物理运动状态的物理量,物体运动状态发生变化,物体运动形式发生变化,物体的能都相应随之变化;做功是使物体能量发生变化的一种方式,物体能量的变化可以用相应的力做功量度。
(2)力对物体做功使物体能量发生变化,不能理解为功变成能,而是通过力做功的过程,使物体之间发生能量的传递与转化。
(3)力做功可以使物体间发生能的传递与转化,但能的总量是保持不变的。自然界中,物体的能量在传递、转化过程中总是遵循能量守恒这一基本规律的。
六、说明
本节内容的处理应根据学生具体情况而定,学生基础较好,可介绍较多内容;学生基础较差,不一定要求应用物体机械能变化规律解题,只需对功和能关系有初步了解即可。
篇11:高一物理教学课件
高一物理教学课件
教学目的:
1、了解万有引力定律得出的'思路和过程;
2、理解万有引力定律的含义并会推导万有引力定律;
3、掌握万有引力定律,能解决简单的万有引力问题;
教学难点:
万有引力定律的应用
教学重点:
万有引力定律
教具:
展示第谷、哥白尼,伽利略、开普勒和牛顿等人图片.
教学过程
1、引言
展示第谷、哥白尼,伽利略、开普勒和牛顿等人照片并讲述物理学史:
十七世纪中叶以前的漫长时间中,许多天文学家和物理学家(如第谷、哥白尼,伽利略和开普勒等人),通过了长期的观察、研究,已为人类揭示了行星的运动规律.但是,长期以来人们对于支配行星按照一定规律运动的原因是什么.却缺乏了解,更没有人敢于把天体运动与地面上物体的运动联系起来加以研究.
伟大的物理学家牛顿在哥白尼、伽利略和开普勒等人研究成果的基础上,进一步将地面上的动力学规律推广到天体运动中,研究、确立了《万有引力定律》.从而使人们认识了支配行星按一定规律运动的原因,为天体动力学的发展奠定了基础.那么:
(1)牛顿是怎样研究、确立《万有引力定律》的呢?
(2)《万有引力定律》是如何反映物体间相互作用规律的?
以上两个问题就是这节课要研究的重点.
2、通过举例分析,引导学生粗略领会牛顿研究、确立《万有引力定律》的科学推理的思维方法.
苹果在地面上加速下落:(由于受重力的原因):
月亮绕地球作圆周运动:(由于受地球引力的原因);
行星绕太阳作圆周运动:(由于受太阳引力的原因),
(牛顿认为)
牛顿将上述各运动联系起来研究后提出:这些力是属于同种性质的力,应遵循同一规律;并进一步指出这种力应存在于宇宙中任何具有质量的物体之间.
3、引入课题.
篇12:高一物理公式课件
高一物理公式课件
高一物理公式课件
一, 质点的运动
(1)----- 直线运动
1)匀变速直线运动
1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as
3.中间时刻速度 Vt / 2= V平=(V t + V o) / 2
4.末速度V=Vo+at
5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2
6.位移S= V平t=V o t + at2 / 2=V t / 2 t
7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s
时间(t):秒(s) 位移(S):米(m) 路程:米
速度单位换算: 1m/ s=3.6Km/ h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度V_o =0 2.末速度V_t = g t
3.下落高度h=gt2 / 2(从V_o 位置向下计算)
4.推论V t2 = 2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=V_o t – gt 2 / 2 2.末速度V_t = V_o – g t (g=9.8≈10 m / s2 )
3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起)
5.往返时间t=2V_o / g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,
如在同点速度等值反向等。
二 、 力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8 m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=G m_1m_2 / r2 G=6.67×10-11 N·m2/kg2 方向在它们的连线上
6.静电力F=K Q_1Q_2 / r2 K=9.0×109 N·m2/C2 方向在它们的连线上
7.电场力F=Eq E:场强N/C q:电量C 正电荷受的'电场力与场强方向相同
8.安培力F=B I L sinθ θ为B与L的夹角 当 L⊥B时: F=B I L , B//L时: F=0
9.洛仑兹力f=q V B sinθ θ为B与V的夹角 当V⊥B时: f=q V B , V//B时: f=0
注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位
B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。
2)力矩
1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离
2.转动平衡条件 M顺时针= M逆时针 M的单位为N·m 此处N·m≠J
三.平抛运动
1.水平方向速度V_x= V_o 2.竖直方向速度V_y=gt
3.水平方向位移S_x= V_o t 4.竖直方向位移S_y=gt2 / 2
5.运动时间t=(2S_y / g)1/2 (通常又表示为(2h/g) 1/2 )
6.合速度V_t=(V_x2+V_y2) 1/2=[ V_o2 + (gt)2 ] 1/2
合速度方向与水平夹角β: tgβ=V_y / V_x = gt / V_o
7.合位移S=(S_x2+ S_y2) 1/2 ,
位移方向与水平夹角α: tgα=S_y / S_x=gt / (2V_o)
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(S_y)决定与水平抛出速度无
关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲
线运动。
2)匀速圆周运动
1.线速度V=s / t=2πR / T 2.角速度ω=Φ / t = 2π / T= 2πf
3.向心加速度a=V2 / R=ω2 R=(2π/T)2 R 4.向心力F心=mV2 / R=mω2 R=m(2π/ T)2 R
5.周期与频率T=1 / f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r / s 半径(R):米(m) 线速度(V):m / s
角速度(ω):rad / s 向心加速度:m / s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只
改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2 / R3=K(4π2 / GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm_1m_2 / r2 G=6.67×10-11N·m2 / kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2
ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V_1=(g地
r地)1/2=7.9Km/s V_2=11.2Km/s V_3=16.7Km/s
6.地球同步卫星GMm / (R+h)2=m4π2 (R+h) / T2
h≈36000 km/h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
篇13:高一物理复习课件
高一物理复习课件
高一物理复习课件
曲线运动
(一)、知识网络
(二)重点内容讲解
1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:
(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;
(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。
曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循平等四边形定则。
2、平抛运动
平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:
(1)水平方向:ax=0,vx=v0,x= v0t。
(2)竖直方向:ay=g,vy=gt,y= gt2/2。
(3)合运动:a=g, , 。vt与v0方向夹角为θ,tanθ= gt/ v0,s与x方向夹角为α,tanα= gt/ 2v0。
平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即 ,与v0无关。水平射程s= v0 。
3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。
正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。
圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv2/r=mrω2列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。
对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v临= ,杆类的约束条件为v临=0。
(三)常考模型规律示例总结
1.渡河问题分析
小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动.
例1:设河宽为d,船在静水中的速度为v1,河水流速为v2
①船头正对河岸行驶,渡河时间最短,t短=
②当 v1> v2时,且合速度垂直于河岸,航程最短x1=d
当 v1< v2时,合速度不可能垂直河岸,确定方法如下:
如图所示,以 v2矢量末端为圆心;以 v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则
合速度沿此切线航程最短,
由图知: sinθ=
最短航程x2= =
注意:船的划行方向与船头指向一致,而船的航行方向是实际运动方向.
小船过河,船对水的速率保持不变.若船头垂直于河岸向前划行,则经10min可到达下游120m处的对岸;若船头指向与上游河岸成θ角向前划行,则经12.5min可到达正对岸,试问河宽有多少米?
河宽200m
2.平抛运动的规律
平抛运动可以看成是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
以抛出点为原点,取水平方向为x轴,正方向与初速度v0的方向相同;竖直方向为y轴,正方向向下;物体在任一时刻t位置坐标P(x,y),位移s,速度vt(如图)的关系为:
速度公式
水平分速度:vx=v0,竖直分速度:vy=gt.
T时刻平抛物体的速度大小和方向:
Vt= ,tanα= =gt/v0
位移公式(位置坐标):水平分位移:x=v0t,
竖直分位移:y=gt2/2
t时间内合位移的大小和方向:l= ,tanθ= =
由于tanα=2tanθ,vt的反向延长线与x轴的交点为水平位移的中点.
轨迹方程:平抛物体在任意时刻的位置坐标x和y所满足的方程,叫轨迹方程,由位移公式消去t可得:
y= x2或 x2= y
显然这是顶点在原点,开口向下的抛物线方程,所以平抛运动的轨迹是一条抛物线.
小球以初速度v0水平抛出,落地时速度为v1,阻力不计,以抛出点为坐标原点,以水平初速度v0方向为x轴正向,以竖直向下方向为y轴正方向,建立坐标系
小球在空中飞行时间t
抛出点离地面高度h
水平射程x
小球的位移s
落地时速度v1的方向,反向延长线与x轴交点坐标x是多少?
(1)如图在着地点速度v1可分解为水平方向速度v0和竖直方向分速度vy,
而vy=gt则v12=v02+vy2=v02+(gt)2 可求 t=
(2)平抛运动在竖直方向分运动为自由落体运动
h=gt2/2= =
(3)平抛运动在水平方向分运动为匀速直线运动
x=v0t=
(4)位移大小s= =
位移s与水平方向间的夹角的正切值
tanθ= =
(5)落地时速度v1方向的反方向延长线与x轴交点坐标x1=x/2=v0
(1)t= (2) h= (3) x=
(4) s= tanθ= (5) x1= v0
平抛运动常分解成水平方向和竖直方向的两个分运动来处理,由竖直分运动是自由落体运动,所以匀变速直线运动公式和推论均可应用.
火车以1m/s2的加速度在水平直轨道上加速行驶,车厢中一乘客把手伸到窗外,从距地面2.5m高处自由一物体,若不计空气阻力,g=10m/s2,则
物体落地时间为多少?
物体落地时与乘客的水平距离是多少?
(1) t= s (2) s=0.25m
3. 传动装置的两个基本关系:皮带(齿轴,靠背轮)传动线速度相等,同轴转动的角速度相等.
在分析传动装置的各物理量之间的关系时,要首先明确什么量是相等的,什么量是不等的,在通常情况下同轴的各点角速度ω,转速n和周期T相等,而线速度v=ωr与半径成正比。在认为皮带不打滑的情况下,传动皮带与皮带连接的边缘的各点线速度的大小相等,而角速度ω=v/r 与半径r成反比.
如图所示的传动装置中,B,C两轮固定在一起绕同一轴转动,A,B两轮用皮带传动,三轮的半径关系是rA=rC=2rB.若皮带不打滑,求A,B,C轮边缘的a,b,c三点的角速度之比和线速度之比.
A,B两轮通过皮带传动,皮带不打滑,则A,B两轮边缘的线速度大小相等.即
va=vb 或 va:vb=1:1 ①
由v=ωr得 ωa: ωb= rB: rA=1:2 ②
B,C两轮固定在一起绕同一轴转动,则B,C两轮的角速度相同,即
ωb=ωc或 ωb: ωc=1:1 ③
由v=ωr得vb:vc=rB:rC=1:2 ④
由②③得ωa: ωb: ωc=1:2:2
由①④得va:vb:vc=1:1:2
a,b,c三点的角速度之比为1:2:2;线速度之比为1:2:2
如图所示皮带传动装置,皮带轮为O,O′,RB=RA/2,RC=2RA/3,当皮带轮匀速转动时,皮带不皮带轮之间不打滑,求A,B,C三点的角速度之比、线速度之比和周期之比。
(1) ωA: ωB: ωc=2:2:3
(2) vA:vB:vc=2:1:2
TA:TB:TC=3:3:2
4. 杆对物体的拉力
【例4】细杆的一端与小球相连,可绕O点的水平轴自由转动,不计摩擦,杆长为R。
(1)若小球在最高点速度为 ,杆对球作用力为多少?当球运动到最低点时,杆对球的作用力为多少?
(2)若球在最高点速度为 /2时,杆对球作用力为多少?当球运动到最低点时,杆对球的作用力是多少?
(3)若球在最高点速度为2 时,杆对球作用力为多少?当球运动到最低点时,杆对球的作用力是多少?
〖思路分析〗(1)球在最高点受力如图(设杆对球作用力T1向下)
则T1+mg=mv12/R,将v1= 代入得T1 =0。故当在最高点球速为 时,杆对球无作用力。
当球运动到最低点时,由动能定理得:
2mgR=mv22/2- mv12/2,
解得:v22=5gR,
球受力如图:
T2-mg=mv22/R,
解得:T2 =6mg
同理可求:(2)在最高点时:T3=-3mg/4 “-”号表示杆对球的作用力方向与假设方向相反,即杆对球作用力方向应为向上,也就是杆对球为支持力,大小为3mg/4
当小球在最低点时:T4=21mg/4
(3)在最高点时球受力:T5=3mg;在最低点时小球受力:T6=9mg
〖答案〗(1)T1 =0 ,T2 =6mg (2)T3=3mg/4,T4=21mg/4 (3)T5=3mg,T6=9mg
〖方法总结〗(1)在最高点,当球速为 ,杆对球无作用力。
当球速小于 ,杆对球有向上的支持力。当球速大于 ,杆对球有向下的拉力。
(2)在最低点,杆对球为向上的拉力。
〖变式训练4〗如图所示细杆的一端与一小球相连,可绕过O点的水平轴自由转动。现给小球一初速度,使它做圆周运动,图中a、b分别表示小球的轨道的最低点和最高点。则杆对小球的作用力可能是:
a处是拉力,b处是拉力。
a处是拉力,b处是推力。
a处是推力。B处是拉力。
D、a处是推力。B处是推力。
〖答案〗AB
万有引力与航天
(一)知识网络
托勒密:地心说
人类对行 哥白尼:日心说
星运动规 开普勒 第一定律(轨道定律)
行星 第二定律(面积定律)
律的认识 第三定律(周期定律)
运动定律
万有引力定律的发现
万有引力定律的内容
万有引力定律 F=G
引力常数的测定
万有引力定律 称量地球质量M=
万有引力 的理论成就 M=
与航天 计算天体质量 r=R,M=
M=
人造地球卫星 M=
宇宙航行 G = m
mr
ma
第一宇宙速度7.9km/s
三个宇宙速度 第二宇宙速度11.2km/s
地三宇宙速度16.7km/s
宇宙航行的成就
(二)、重点内容讲解
计算重力加速度
1 在地球表面附近的重力加速度,在忽略地球自转的情况下,可用万有引力定律来计算。
G=G =6.67* * =9.8(m/ )=9.8N/kg
即在地球表面附近,物体的重力加速度g=9.8m/ 。这一结果表明,在重力作用下,物体加速度大小与物体质量无关。
2 即算地球上空距地面h处的重力加速度g’。有万有引力定律可得:
g’= 又g= ,∴ = ,∴g’= g
3 计算任意天体表面的重力加速度g’。有万有引力定律得:
g’= (M’为星球质量,R’卫星球的半径),又g= ,
∴ = 。
星体运行的基本公式
在宇宙空间,行星和卫星运行所需的向心力,均来自于中心天体的万有引力。因此万有引力即为行星或卫星作圆周运动的向心力。因此可的以下几个基本公式。
1 向心力的六个基本公式,设中心天体的质量为M,行星(或卫星)的圆轨道半径为r,则向心力可以表示为: =G =ma=m =mr =mr =mr =m v。
2 五个比例关系。利用上述计算关系,可以导出与r相应的比例关系。
向心力: =G ,F∝ ;
向心加速度:a=G , a∝ ;
线速度:v= ,v∝ ;
角速度: = , ∝ ;
周期:T=2 ,T∝ 。
3 v与 的关系。在r一定时,v=r ,v∝ ;在r变化时,如卫星绕一螺旋轨道远离或靠近中心天体时,r不断变化,v、 也随之变化。根据,v∝ 和 ∝ ,这时v与 为非线性关系,而不是正比关系。
一个重要物理常量的意义
根据万有引力定律和牛顿第二定律可得:G =mr ∴ .这实际上是开普勒第三定律。它表明 是一个与行星无关的物理量,它仅仅取决于中心天体的质量。在实际做题时,它具有重要的物理意义和广泛的应用。它同样适用于人造卫星的运动,在处理人造卫星问题时,只要围绕同一星球运转的卫星,均可使用该公式。
估算中心天体的质量和密度
1 中心天体的质量,根据万有引力定律和向心力表达式可得:G =mr ,∴M=
2 中心天体的密度
方法一:中心天体的密度表达式ρ= ,V= (R为中心天体的半径),根据前面M的表达式可得:ρ= 。当r=R即行星或卫星沿中心天体表面运行时,ρ= 。此时表面只要用一个计时工具,测出行星或卫星绕中心天体表面附近运行一周的时间,周期T,就可简捷的估算出中心天体的平均密度。
方法二:由g= ,M= 进行估算,ρ= ,∴ρ=
(三)常考模型规律示例总结
1. 对万有引力定律的理解
(1)万有引力定律:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的平方成反比,两物体间引力的方向沿着二者的连线。
(2)公式表示:F= 。
(3)引力常量G:①适用于任何两物体。
②意义:它在数值上等于两个质量都是1kg的物体(可看成质点)相距1m时的相互作用力。
③G的通常取值为G=6。67×10-11Nm2/kg2。是英国物理学家卡文迪许用实验测得。
(4)适用条件:①万有引力定律只适用于质点间引力大小的计算。当两物体间的距离远大于每个物体的尺寸时,物体可看成质点,直接使用万有引力定律计算。
②当两物体是质量均匀分布的球体时,它们间的引力也可以直接用公式计算,但式中的r是指两球心间的距离。
③当所研究物体不能看成质点时,可以把物体假想分割成无数个质点,求出两个物体上每个质点与另一物体上所有质点的万有引力,然后求合力。(此方法仅给学生提供一种思路)
(5)万有引力具有以下三个特性:
①普遍性:万有引力是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,它是自然界的物体间的基本相互作用之一。
②相互性:两个物体相互作用的引力是一对作用力和反作用力,符合牛顿第三定律。
③宏观性:通常情况下,万有引力非常小,只在质量巨大的天体间或天体与物体间它的存在才有宏观的物理意义,在微观世界中,粒子的质量都非常小,粒子间的万有引力可以忽略不计。
〖例1〗设地球的质量为M,地球的半径为R,物体的质量为m,关于物体与地球间的万有引力的说法,正确的是:
A、地球对物体的引力大于物体对地球的引力。
物体距地面的高度为h时,物体与地球间的万有引力为F= 。
物体放在地心处,因r=0,所受引力无穷大。
D、物体离地面的高度为R时,则引力为F=
〖答案〗D
〖总结〗(1)矫揉造作配地球之间的吸引是相互的,由牛顿第三定律,物体对地球与地球对物体的引力大小相等。
(2)F= 。中的r是两相互作用的物体质心间的.距离,不能误认为是两物体表面间的距离。
(3)F= 适用于两个质点间的相互作用,如果把物体放在地心处,显然地球已不能看为质点,故选项C的推理是错误的。
〖变式训练1〗对于万有引力定律的数学表达式F= ,下列说法正确的是:
A、公式中G为引力常数,是人为规定的。
B、r趋近于零时,万有引力趋于无穷大。
C、m1、m2之间的引力总是大小相等,与m1、m2的质量是否相等无关。
D、m1、m2之间的万有引力总是大小相等,方向相反,是一对平衡力。
〖答案〗C
2. 计算中心天体的质量
解决天体运动问题,通常把一个天体绕另一个天体的运动看作匀速圆周运动,处在圆心的天体称作中心天体,绕中心天体运动的天体称作运动天体,运动天体做匀速圆周运动所需的向心力由中心天体对运动天体的万有引力来提供。
式中M为中心天体的质量,Sm为运动天体的质量,a为运动天体的向心加速度,ω为运动天体的角速度,T为运动天体的周期,r为运动天体的轨道半径.
(1)天体质量的估算
通过测量天体或卫星运行的周期T及轨道半径r,把天体或卫星的运动看作匀速圆周运动.根据万有引力提供向心力,有 ,得
注意:用万有引力定律计算求得的质量M是位于圆心的天体质量(一般是质量相对较大的天体),而不是绕它做圆周运动的行星或卫星的m,二者不能混淆.
用上述方法求得了天体的质量M后,如果知道天体的半径R,利用天体的体积 ,进而还可求得天体的密度. 如果卫星在天体表面运行,则r=R,则上式可简化为
规律总结:
掌握测天体质量的原理,行星(或卫星)绕天体做匀速圆周运动的向心力是由万有引力来提供的.
物体在天体表面受到的重力也等于万有引力.
注意挖掘题中的隐含条件:飞船靠近星球表面运行,运行半径等于星球半径.
(2)行星运行的速度、周期随轨道半径的变化规律
研究行星(或卫星)运动的一般方法为:把行星(或卫星)运动当做匀速圆周运动,向心力来源于万有引力,即:
根据问题的实际情况选用恰当的公式进行计算,必要时还须考虑物体在天体表面所受的万有引力等于重力,即
(3)利用万有引力定律发现海王星和冥王星
〖例2〗已知月球绕地球运动周期T和轨道半径r,地球半径为R求(1)地球的质量?(2)地球的平均密度?
〖思路分析〗
设月球质量为m,月球绕地球做匀速圆周运动,
则: ,
(2)地球平均密度为
答案: ;
总结:①已知运动天体周期T和轨道半径r,利用万有引力定律求中心天体的质量。
②求中心天体的密度时,求体积应用中心天体的半径R来计算。
〖变式训练2〗人类发射的空间探测器进入某行星的引力范围后,绕该行星做匀速圆周运动,已知该行星的半径为R,探测器运行轨道在其表面上空高为h处,运行周期为T。
(1)该行星的质量和平均密度?(2)探测器靠近行星表面飞行时,测得运行周期为T1,则行星平均密度为多少?
答案:(1) ; (2)
3. 地球的同步卫星(通讯卫星)
同步卫星:相对地球静止,跟地球自转同步的卫星叫做同步卫星,周期T=24h,同步卫星又叫做通讯卫星。
同步卫星必定点于赤道正上方,且离地高度h,运行速率v是唯一确定的。
设地球质量为 ,地球的半径为 ,卫星的质量为 ,根据牛顿第二定律
设地球表面的重力加速度 ,则
以上两式联立解得:
同步卫星距离地面的高度为
同步卫星的运行方向与地球自转方向相同
注意:赤道上随地球做圆周运动的物体与绕地球表面做圆周运动的卫星的区别
在有的问题中,涉及到地球表面赤道上的物体和地球卫星的比较,地球赤道上的物体随地球自转做圆周运动的圆心与近地卫星的圆心都在地心,而且两者做匀速圆周运动的半径均可看作为地球的R,因此,有些同学就把两者混为一谈,实际上两者有着非常显著的区别。
地球上的物体随地球自转做匀速圆周运动所需的向心力由万有引力提供,但由于地球自转角速度不大,万有引力并没有全部充当向心力,向心力只占万有引力的一小部分,万有引力的另一分力是我们通常所说的物体所受的重力(请同学们思考:若地球自转角速度逐渐变大,将会出现什么现象?)而围绕地球表面做匀速圆周运动的卫星,万有引力全部充当向心力。
赤道上的物体随地球自转做匀速圆周运动时由于与地球保持相对静止,因此它做圆周运动的周期应与地球自转的周期相同,即24小时,其向心加速度;而绕地球表面运行的近地卫星,其线速度即我们所说的第一宇宙速度,
它的周期可以由下式求出:
求得 ,代入地球的半径R与质量,可求出地球近地卫星绕地球的运行周期T约为84min,此值远小于地球自转周期,而向心加速度 远大于自转时向心加速度。
篇14:高一物理力课件
高一物理力课件
一、 教学内容分析
《力的合成》是人教版《物理》(必修1)第三章第四节的内容。通过本节课的学习,学生将明确两个力同时作用在物体这一问题的处理方法。在这节课的学习中,等效替代的思想在建立概念、寻求合力与分力关系的过程中被深度应用;平行四边形定则是矢量运算普遍遵循的法则,而矢量运算贯穿高中物理始终,用“图形”表示物理量之间关系的方法,对学生而言是一个新方法。因此,该节在教和学两方面都具有承前启后的作用;其涉及的物理研究方法和实验方法在高中物理中具有典型性,并使学生进一步认识到物理实验、物理模型、数学工具在物理学发展过程中的应用;采用自主、合作、探究等新型的学习方式,有助于培养学生的自主探究能力、训练严谨细致的科学态度和精神,提高学生的科学素养,促进学生全面素质的和谐发展。
二、学生学习情况分析
在学习本节课之前,学生已经学习了力、重力、弹力、摩擦力等力的概念,对“力”有了较为深刻的理解和认识;同时,通过位移、速度和加速度等矢量的学习,对“矢量”也有了初步的认识。这为本节课的.学习提供了基本的知识储备。然而,脑中根深蒂固的标量运算对学生学习力的合成而言,是一种负迁移,对力进行合成时,照搬标量运算的方法来应付,而矢量运算使用的平行四边形定则,对于学生初次学习而言比较抽象,且涉及几何和三角等数学知识,感觉有难度。学生在初中所学的二力平衡为标量代数运算,要想直接过渡到互成角度的力的合成遵循平行四边形定则的矢量运算,思维阶梯跨度较大,在认知水平上是一次质的跨越,很难要求学生一次转化完成,这些都给本节课的教学带来了困难。
三、设计思想
依据本校实际教学条件和新课程理念,在教学中实施中注重学生自主、合作、探究学习,让学生积极参与、乐于探究、勇于实验、勤于思考,通过多样化的教学方式,帮助学生学习。由于本节课比较抽象,但实验比较直观,易于得到实验结论,我准备采用学生自主探究、合作交流、分组讨论与教师讲授相结合的方式进行教学。
四、教学目标
知识与技能
1.
理解合力、分力、力的合成。
2.理解合力与分力的关系是作用效果上的等效替代。
3.掌握平行四边形定则的含义和使用方法,会用它求两个分力的合力。
过程与方法
1.通过合力与分力概念的建立过程,体会物理学中常用的研究方法──等效替代法。
2.通过探究求互成角度的两个力合力方法的过程,体会逻辑和实验相结合的科学方法。
情感态度与价值观
1.感受科学研究的乐趣和社会价值。
2.体会科学研究中合作、交流的重要性和必要性。
教学重点:
1.合力与分力的概念及其等效替代关系。
2.平行四边形定则及其简单应用。
教学难点:
平行四边形定则的探究过程及其结论。
五、教学用具
1.实验器材:木板、白纸、图钉(若干)、橡皮条、细绳套(两根)、弹簧秤(两只)、三角板、铅笔;
2. 计算机、实物展示台等多媒体辅助教学设备;DIS-lab设备;CAI课件
六、教学设计思想自我剖析
一、落实教学理念,以学生的发展为本
本节课基于“以学定教”的教学理念,采用了“情景——问题——探究——应用”的模式去组织教学,让学生在情景中体验、感悟中建立分力和合力的概念,通过参与探究来寻找合力和分力的关系,为学生的认知学习提供了有利条件。
二、创设情境,激发学生兴趣
通过学生的参与活动,发生与学生预想不同或猜想不到的结果,引起认知冲突,激发起他们强烈的求知欲望。在后续的教学活动中,教师通过问题串的形式,引领学生进行分析探究,通过严谨的实验探究量化研究过程,通过“图形”表示物理量之间的关系。并且,在探究过程中,学生通过分工与合作来完成实验的操作,因此对协作这种学习方式的体会也是本节课的目的之一。
三、传统实验与数字化实验取长补短,相得益彰
传统实验通过橡皮筋的形变情况反映力的作用效果,其便于探究各种特殊的力的合成规律,同时也便于小组成员之间的分工合作,但是由于弹簧测力计的读数非整数,为作力的图示带来了麻烦。但是传统实验在培养学生实验的规范性和实验技能方面,具有重要作用。而数字化实验的最大特点是借助计算机和传感器技术手段,能实时、定量表示出分力大小的变化,同步计算出合力大小不变的特征,但是它并不能直观给出合力和分力满足的平行四边形定则的矢量关系,所以比较适合用于定量检验。
在组织教学过程中,要利用各类实验的特点,共同突破学习中的思维难点,以谋求实验效果的最大化。
篇15:高一物理重力势能课件
高一物理重力势能课件
一、素质教育目标
(一)知识教学点
1.知道重力势能的定义。
2.理解重力势能的计算公式,知道重力势能是标量,单位是焦耳。
3.理解重力做功与重力势能的关系。
4.知道重力势能的值是相对的,理解重力势能正负的含义。
5.了解弹性势能,知道弹簧的弹性势能的决定因素。
(二)能力训练点
1.据重力做功的特点,推导重力势能的表达方式。
2.从能的转化角度和功能关系来解释和分析物理现象
(三)德育渗透点
1.培养热爱科学,崇尚科学的品质
2.注意观察和分析生活中的有关的物理现象,激发和培养探索自然规律的兴趣。
(四)美育渗透点
让学生体会到从自然现象中概括了来的物理概念具有的自然美,严谨的科学美。
二、学法引导
通过典型事例分析和实验演示来分析讨论,指导学生总结、归纳。
三、重点难点疑点及解决办法
1.重点
重力势能大小的确定
2.难点
重力势能的相对性的理解,参考平面的选择方法。
3.疑点
如何理解重力对物体做功等于物体重力势能增量的负值。
4.
1.演绎推导物体重力势能的定义表达方式。
2.类比分析,举例释疑。
四、课时安排
1课时
五、教具学具准备
弹簧、铁球、木球、玻璃缸、细沙、长木板,木块
六、师生互动活动设计
1.教师利用实例来引入问题,利用实验来引导学生讨论问题,利用讲解来加深对概念的进一步认识。
2.学生观察、分析、讨论、总结,并通过实例分析来形成能力。
七、教学步骤
(一)明确目标
(略)
(二)整体感知
在复习初中掌握的重力势能有关知识的基础上,进一步根据功的定义,推导出重力势能的计算公式,并通过实例分析,理解重力势能的相对性、正负含义等,并能准确地计算重力势能值.
(三)重点、难点的学习与目标完成过程
【引入新课】
放录像并讲解:俄罗斯“和平号”空间站于3月23日北京时间14时0分12秒所有残片都已成功安全地坠入预定的南太平洋海域,坠毁过程极为壮观美丽,137吨的庞然大物分解燃烧,天空中出一条条长长的金色轨迹.这是一个完美的告别,“和平号”的风雨历程将成为人类永恒的记忆.“和平号”的功绩将永载史册.
现提问:“和平号”空间站坠落时,为什么会燃烧?
碎片燃烧时,温度可达3000℃,其能量由什么能量转化而来?
现在,就讲重力势能
1.重力势能
回忆初中的知识,可知
(l)定义:物体由于被举高而具有的能量.
演示实验,用木球和铁球先后从同一高度处自由下落,落入玻璃缸中的细沙中,观察到什么现象?这说明了什么?(铁球深入细砂中的距离比木球要长,这说明,质量大的物体在相同的高度时,重力势能大,克服细砂阻力做功要多)
用铁球在不同的高度处自由下落,先后落入玻璃缸中的细砂里,观察到什么现象,这又说明了什么?(铁球在比较高的地方落下来,深入砂中的距离也比较长,这说明,同一个物体在比较高的地方重力势能较大,克服细砂阻力做功要多)
综上所述,物体的重力势能的大小与物体的质量和物体所处的高度有关.
现在来推导重力势能的定量表达式:投球的质量为,从高度为 的A点下落到高度为 的B点,如图所示,重力所做的功为
(2)重力势能的表述式
物体的重力势能等于物体的重量和它的高度的乘积,重力势能是标量,也是状态量,其单位为
(3)重力做功与重力势能的关系
重力做功也可以写成
当物体下落时,重力做正功, ,可设 ,这说明,重力做功,重力势能 减少,减少的值等于重力所做的功.
同理,当物体上升时,重力做负功,重力势能E增加,增加的值等于重力所做的功,要注意的是,重力做负功也可以说成物体克服重力做功.
这种功能关系不仅适合于直线运动,也适合于曲线运动,重力做功只跟物体的运动过程中初、末位置的高度差有关,而与运动的路径无关.
提问:一个物体的质量为10g,把它置放在2楼的一张1高的桌面上,若楼房的每层楼高3,求此物体的重力势能值?
(无法计算,因为没有说明物体的高度是以什么位置为零高度,从地面算起,物体的重力势能 ,若从二楼楼面算起,物体的重力势为 .对于不同的零高度点物体所对应的重力势能值也各不相同)
2.重力势能具有相对性
正如上例所述,要确定物体重力势能 的大小,首先必须确定一个参考平面为零势能面,若定了零重力势能参考平面,物体在此平面的`下方,物体的重力势能就为负,如上例把三楼底板为零重力势能平面物体的重力势能
由此看来,物体重力势能的正负还表示重力势能的大小,在参考水平面以上的物体的重力势能一定大于参考平面以下物体的重力势能.
要特别指出的是:重力势能的变化县与零重力势能参考平面选择无关,就好像物体的高度值与选择哪一点作为测量起点无关.至于选择哪个水平面作为参考平面,可视研究,解决问题的方便而定.
与重力势能相类似,还有弹性势能.
3.弹性势能
演示实验:把水平放置的轻弹簧一端固定,另一端系一木块,压(或拉)木块,使弹簧缩短(或伸长)再释放木块,让弹簧的作用力带动木块在水平面上运动.
可知,发生弹性形变的物体能对外界做功,因而具有能量,这种能量就叫弹性势能,它存在于发生弹性形变的物体之中.
举出除弹簧以外的弹性势能存在的实例
弹性势能的大小,与物体的性质(如劲度系数)和形变量有关,可用实验演示弹簧形变量越大对外界做功可越多来说明.
势能又叫位能,它是由相互作用的物体的相对位置决定.机械运动中的势能是重力势能和弹性势能的统称.
(四)总结、扩展
1.势能有多种,与高度有关的重力势能和与形变有关的弹性势能是力学中的两种,在热力学中有分子势能,在电磁学中有电势能等.
2.势能是存在于有相互作用的物体之间,它是属于有相互作用两部分物体即物体系的,但不是有相互作用物体之间就有势能存在,比如物体间的相互作用是摩擦力,但它们就不存在什么势能.
3.势能都是相对量,只有先走零势能参考平面,势能才有确定的值.
八、布置作业
P146练习四(2)(4)(5)
九、板书设计
1.重力势能
(1)定义:物体由于被举高而具有的能量.
(2)重力势能的表达公式.
(3)重力做功与重力势能的关系.
物体下落
物体上升
2.重力势能具有相对性.
定了参考平面,物体重力势能才有确定值.
重力势能的变化与参考平面选择无关.
3.弹性势能
十、背景知识与课外阅读
用能量最低原理求解两例物理题
高中化学中讲到“能量最低原理”在不违背泡利原理的情况下,核外电子总是尽先安排布在能量最低的轨道上,电子在该轨道上,处于稳定状态,其实,能量最低原理也适用于物体系物体系的稳定状态与系统的势能有关,势能越小则状态越稳定.物体系在不受外力的情况下,总处在势能最小的状态,即稳定状态.下面利用能量最低原理,求解两例物理题.
[例1] 一质量均匀不可伸长的绳索,重为 G ,A、B两端固定在天花板上,如图所示.今在最低点C施加一竖直向下的力将绳拉至D点,在此过程中,绳索AB的重心位置( )
A.逐渐升高 B.逐渐降低
C.先降低后升高 D.始终不变
解析:由能量最低原理知,物体在静止情况下,总处于能量最低状态(即稳定状态).该状态下重力势能最小.故施力F后,细绳重心上升,故选答案A.
[例2] 如图所示.容器A、B中各有一个可自由移动的轻活塞,活塞下面是水.大气压恒定,A、B底部由带阀门的管道相连,整个装置与外界绝热,原先A中的水面比B中的高,打开阀门,使A中的水逐渐向B中流,在这个过程中( )
A.大气压力对水做功,水的内能增加
B.水克服大气压力做功,水的内能不变
C.大气压力对水不做功,水的内能不变
D.大气压力对水不做功,水的内能增加
解析:由能量最低原理可知,打开阀门见水达到平衡时应具有最小势能,故在打开阀门至平衡过程中,水的重力势能减小.又由题意知整个装置与外界绝热,因此由能量守恒得,重力势能的减少量转化为水的内能.故选答案D.
十一、随堂练习
1.下面关于重力势能的说法中,正确的是( )
A.地球上的任何一个物体的重力势能都有一个确定的值.
B.从同一高度将某一物体以相同的速率平抛或下抛,落到地面时,物体的重力势能 变化是相同的.
C.在不同高度的物体具有的重力势能可能相同.
D.低于零重力势能面的物体的重力势能一定小于在零重力势能平面以上物体的重力 势能.
2.如图所示,质量为的物体置于水平地面上,其上表面竖立直着一根轻弹簧,弹簧长为 ,劲度系数为,下端与物体相连接,现将弹簧上端缓缓竖直向上提起一段距离L,使物体离开地面,这时物体重力势能增加 .
3.一根质量分布不均匀的金属链条重30N,长1,盘曲在水平地面上,当从链条的A端慢慢提起链条到使它的另一端B恰好离开地面需做功12,如改从B端慢慢提起链条使链条A端恰好离开地面需要做功多少?
4.如图所示,桌面高为h,质量为的小球从离桌面高为H处自由下落,不计空气阻力,假设桌面处的重力势能为零,则小球落到地面前瞬间的机械能为( )
A.B.
C.D.
5.如图所示,物体从A点出发,沿3条不同的轨道运动到B点,则在移动的过程中重力做功的情况是( )
A.沿路径运动,重力做功最多
B.沿路径运动,重力做功最多
C.沿路径运动,重力做功最多
D.无论沿哪条路径,做功都一样多
6.质量为1g的物体做自由落体运动,下落1s时,物体的动能为 ,物体的重力势能减少了 .
答案:1.BCD 2. 3.18 4.B 5.D 6.50 50
篇16:高一物理受力分析课件
高一物理受力分析课件
高一物理受力分析课件
1.如图所示,a、b(a、b均处于静止状态)间一定有弹力的是( )
答案:B
2.如图所示,A、B两物体叠放在一起,用手托住,让它们静止靠在墙边,然后释放,使它们同时沿竖直墙面下滑,已知mA>mB,则物体B( )
A.只受一个重力
B.受到重力、摩擦力各一个
C.受到重力、弹力、摩擦力各一个
D.受到重力、摩擦力各一个,弹力两个
答案:A
3.如图所示,轻质弹簧的劲度系数为k,小球重G,平衡时小球在A处,今用力F压小球至B处,使弹簧缩短x,则此时弹簧的弹力为( )
A.kx B.kx+G
C.G-kx D.以上都不对
答案:B
4.如图所示,物体m静止于倾角为θ的斜面上,现用垂直于斜面的推力F=kt(k为比例常量、t为时间)作用在物体上.从t=0开始,物体所受摩擦力Ff随时间t的变化的关系是下图中的( )
答案:A
5.如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0 kg的物体.细绳的一端与物体相连,另一端经摩擦不计的定滑轮与固定的弹簧秤相连.物体静止在斜面上,弹簧秤的示数为4.9 N.关于物体受力的判断(取g=9.8m/s2),下列说法正确的是( )
A.斜面对物体的摩擦力大小为零
B.斜面对物体的摩擦力大小为4.9 N,方向沿斜面向上
C.斜面对物体的支持力大小为4.93 N,方向竖直向上
D.斜面对物体的支持力大小为4.9 N,方向垂直斜面向上
答案:A
6.(双选)如图所示,晾晒衣服的绳子两端分别固定在两根竖直杆上的A、B两点,绳子的质量及绳与衣架挂钩间的摩擦均忽略不计,衣服处于静止状态,如果保持绳子A端在杆上位置不变,将B端向下移到B′位置,稳定后衣服仍处于静止状态.则( )
A.绳子的弹力变大
B.绳子的弹力不变
C.绳对挂钩弹力的合力变
D.绳对挂钩弹力的合力不变
答案:BD
7.(双选)质量为m的物体B置于地面,通过一劲度系数为k的轻弹簧与物体A相连,开始时A、B都处于静止状态,如图所示,现通过细绳将物体A向上匀加速提升,到B刚要离开地面,下列关于物体A的加速度a、速度v、细绳拉力F与物体A的坐标x关系的图象,正确的是哪些?(假设弹簧一直在弹性限度范围内,以A静止位置为原点,建立方向向上的x轴坐标)( )
答案:AC
8.(双选)如图所示,质量分别为m1、m2两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中)力F与水平方向成θ角.则m1所受支持力N和摩擦力f正确的是( )
A.N=m1g+m2g-Fsin θ
B.N=m1g+m2g-Fcos θ
C.f=Fcos θ
D.f=Fsin θ
答案:AC
9.(双选)如图所示,一个处于伸长状态的弹簧,上端固定,在倾角为θ的粗糙斜面上弹簧拉着质量为m的物块保持静止.若将斜面倾角θ逐渐增大的过程中物块始终保持静止,则物块受到各力的变化情况,下列说法正确的是( )
A.受斜面的弹力变大
B.受斜面的摩擦力变大
C.受弹簧的弹力不变
D.受到的'重力沿斜面向下的分力变大
答案:BD
素能提高
10.有三个相同的物体叠放在一起,置于粗糙水平地面上,物体之间不光滑,如下图所示,现用一水平力F作用在B物体上,物体仍保持静止,下列说法错误的是( )
A.C受到地面的摩擦力大小为F,方向水平向左
B.A受到水平向右的摩擦力作用
C.B对C的摩擦力大小为F,方向水平向右
D.C受到五个力的作用
答案:B
11.如右图所示,各接触面粗糙,A在拉力F作用下被匀速抽出,在A完全抽出前,B在绳子的牵制下,始终静止.试分析此过程中A,B的受力情况.
解析:(1)先分析A物体的受力,首先A物体一定受到方向竖直向下的重力GA;其次A跟B和地面接触,因都有挤压,将受到B竖直向下的压力FNB和FN地,且A沿地面向右滑动,所以将受到B和地面向左的摩擦力F1和F2,加上水平拉力F,一共受到6个力的作用,如下图左所示.
(2)再分析B的受力.B除了受到重力GB和支持力FNB′外,由于作用的相互性知B还受到A对它向右的滑动摩擦力F1′;由平衡条件知还有绳子的拉力FT,共4个力,如上图右所示.
答案:见解析
台 球
台球是一种深受欢迎的体育项目,台球基本的规则就是用主球将目标球击落到袋中,当然需要靠主球和目标球碰撞来实现,所以打台球会用到很多的关于碰撞的知识.
我们看到有的时候主球击中目标球后会定住不动,这就是台球中的定球.根据碰撞的知识,如果两个相同质量的球发生弹性正碰,也就是说碰撞前后两个球中心在一条直线上,那么它们将交换速度,所以目标球将以主球的速度跑开,而主球将停在目标球的位置.所以打这种球的关键就是球杆要击中主球的中心,并且球杆要在两个球的球心连线上.
在两球相碰的过程中,经常都不是正碰.这时目标球和主球的前进方向又如何呢?如下图所示,如果主球
的速度方向并不通过目标球的中心,两球相碰时,我们可以将主球的速度v分解在两球心的连线方向和与此连线方向相垂直的方向上.其中v1通过目标球的中心,在v1的方向上,两球发生的是对心的弹性碰撞,碰后目标球就以v1的大小,沿两球心连线的方向运动.主球在两球心连线方向的分速度被交换,但还保持着与连线方向垂直的v2,所以主球就以v2的大小,沿垂直于连线的方向运动着,故两球碰后呈直角状分开.高水平台球运动员
在击球前总要仔细观察和反复测量,这样做的目的就是选择合适的线路和击球力度,不仅要把这个目标球打进,还要为击打下一个目标球做好准备.
当然,台球里包含的物理知识还远不止这些,像常用的跟球、缩球、旋球等打法就包含关于摩擦力、速度合成等知识.从这个小小的例子中可以看出,物理确实是一门实用的学科.
更多推荐
高一物理绪论课件
发布评论