【导语】下面是小编为大家整理的怎样证明两直线平行(共12篇),供大家参考借鉴,希望可以帮助到有需要的朋友。

篇1:怎样证明两直线平行

怎样证明两直线平行

怎样证明两直线平行

“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。

一、怎样证明两直线平行 证明两直线平行的常用定理(性质)有: 1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行. 2、三角形或梯形的中位线定理. 3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4、平行四边形的性质定理. 5、若一直线上有两点在另一直线的同旁 ).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选 C 认六一值!小人晗叱的 一试勺洲洲川JL ZE一B /(一、图月一飞 /匕一|求且它们到该直线的距离相等,则两直线平行. 例1(南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B). 例2(20泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF. (l)求证:EF// Bc

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3. 两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的`长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。

1. 两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行―没有公共点;

(2) 相交―有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2. 两个平面平行的判定定理表述为:

4. 两个平面平行具有如下性质:

(1) 两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2) 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3) 如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4) 夹在两个平行平面间的平行线段相等

2

用反证法

A平面垂直与一条直线,

设平面和直线的交点为P

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形 PQR

PR垂直PQ QR垂直PQ

没有这样的三角形。因为三角形的内角和为180

所以 A一定平行于B

篇2:怎么证明两直线平行

怎么证明两直线平行

怎么证明两直线平行

(1)根据定义。证明两个平面没有公共点。

由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。

(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。

(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。

2. 两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面

与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。

3. 两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。

因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。

两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的`距离,都归结为两点之间的距离。

1. 两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:

(1)平行―没有公共点;

(2) 相交―有无数个公共点,且这些公共点的集合是一条直线。

注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。

2. 两个平面平行的判定定理表述为:

4. 两个平面平行具有如下性质:

(1) 两个平行平面中,一个平面内的直线必平行于另一个平面。

简述为:“若面面平行,则线面平行”。

(2) 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

简述为:“若面面平行,则线线平行”。

(3) 如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。

(4) 夹在两个平行平面间的平行线段相等

2

用反证法

A平面垂直与一条直线,

设平面和直线的交点为P

B平面垂直与一条直线,

设平面和直线的交点为Q

假设A和B不平行,那么一定有交点。

设有交点R,那么

做三角形 PQR

PR垂直PQ QR垂直PQ

没有这样的三角形。因为三角形的内角和为180

所以 A一定平行于B

篇3:怎样证明平行

怎样证明平行

怎样证明平行

设有两两垂直的转轴x、y、z,则由定义得:Jx=m(y^2+z^2),Jy=m(x^2+z^2),Jz=m(x^2+y^2),所以Jx+Jy+Jz=2m(x^2+y^2+z^2)=2mr^2,此为垂直轴定理。在沿z轴向一边平移d得到x'、y'、z轴,则r'^2=r^2+d^2,所以Jx'+Jy'+Jz=2mr'^2=2m(r^2+d^2),与上式相减得(Jx'-Jx)+(Jy'-Jy)=2md^2,因为x、y轴平移方式相同,所以应有Jx'-Jx=Jy'-Jy,所以Jx'-Jx=Jy'-Jy=md^2,即为平行轴定理。

定理和判定都可以求的根据定理来就是:两组对边分别平行根据判定来:a一组对边平行且相等 b对角线互相平分 c对角相等 d两组对边分别相等

2

1,两组对边分别平行2,两组对边分别相等3,一组对边平行且相等4,对角线互相平分

一,两组对边分别平行二,两组对边分别相等三,一组对边平行且相等四,对角线互相平分五,对角相等!

沿着一条对角线折叠,就可以得到这条对角线平分另一条对角线, 再沿着一条对角线折叠,就可以得到另条对角线平分这一条对角线。 这只是演示,不叫证明。因为两条对角线将平行四边形分割成两对全等的三角形 任取其中一对 因为两三角形全等的 所以可得两三角形三条对应边分别相等(之前的都要用内错角来

1两组对边分别平行的四边形是平行四边形(定义)2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4对角线互相平分的四边形是平行四边形5两组对角分别相等的'四边形是平行四边形

1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形

2

1.画个圆,里面画个矩形2.假设圆里面的是平行四边形3.因为对边平行,所以4个角相等4.平行四边四个角之和等于360,5.360除以4等于906.所以圆内平行四边形为矩形..

3判定(前提:在同一平面内)(1)两组对边分别相等的四边形是平行四边形;

(2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别平行的四边形是平行四边形; (4)两条对角线互相平分的四边形是平行四边形 (5)两组对角分别相等的四边形为平行四边形 (注:仅以上五条为平行四边形的判定定理,并非所有真命题都为判定定理,希望各位读者不要随意更改。) (第五条对,如果对角相等,那么邻角之和的二倍等于360°,那么邻角之和等与180°,那么对边平行,(两组对边分别平行的四边形是平行四边形)所以这个四边形是平行四边形) 编辑本段性质(矩形、菱形、正方形都是特殊的平行四边形。) (1)平行四边形对边平行且相等。 (2)平行四边形两条对角线互相平分。 (3)平行四边形的对角相等,两邻角互补。 (4)连接任意四边形各边的中点所得图形是平行四边形。(推论) (5)平行四边形的面积等于底和高的积。(可视为矩形) (6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。 (7)对称中心是两对角线的交点。

篇4:同位角相等两直线平行怎么证明最便捷

在同一平面内,永不相交的两条直线叫平行线。

两直线平行,同位角相等。两直线平行,内错角相等。两直线平行,同旁内角互补。

两条直线a,b被第三条直线c所截,在c的同旁,且在a,b的`同一侧的两个角称为同位角;两条直线a,b被第三条直线c所截,分别在截线的两侧,且夹在a,b之间的两个角叫做内错角;两条直线a,b被第三条直线c所截,在c的同旁,且在被截两条直线a,b之间的两个角叫做同旁内角。两条直线a,b被第三条直线c所截会出现“三线八角”,其中有4对同位角,2对内错角,2对同旁内角。

篇5:怎样证明面面平行

怎样证明面面平行

怎样证明面面平行

线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的`交线平行。

线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

2

证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a 在平面α上,b 在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面 γ上,b 在平面γ上

∴a∥b.

3

用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

4

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5

用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

篇6:《直线平行的条件》教案

《直线平行的条件》教案

【教学目标】

1.掌握平行线的判定方法;

2.了解从平行的判定公理得出其它两种判定方法的过程;

3.感受逻辑推理;

4.感受把未知化为已知的思想.

【教学重点与难点】

探索并掌握平行线的判定方法.

【对话设计】

〖探索1〗

我们以前学过用直尺和三角尺画平行线.如果只用一把三角尺可以吗?如果可以,请用这种方法过点P画一条直线与AB平行.你能够说明你所画的直线一定与AB平行吗?

〖介绍平行线的判定方法1〗

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

〖说明〗方法1也是基本事实(公理).

〖探索2〗

木工经常用角尺画平行线,你能说出其中的道理吗(见P15)?如果只要求画平行线,不用角尺(例如只用三角尺中的`一个锐角)行吗?

〖探索3〗

如图,如果∠1=∠2,由平行线的判定方法1,能得出a∥b吗?

〖结论〗由平行线的判定方法1,可以得出平行线的判定方法2:

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

〖归纳〗

遇到一个新问题时,常常把它转化为已知的(或已经解决的)问题来解决.这一节中,我们利用“同位角相等,两直线平行”得到“内错角相等,两直线平行”.

〖探索4〗如图,现在我们一起来探究:两条直线(a、b)被第三条直线(c)所截,如果同旁内角互补(∠1+∠2=180?),那么这两条直线(a、b)平行吗?

〖结论〗由平行线的判定方法1(或2),可以得出平行线的判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

〖练习〗

1.如图,分别指出下面各推理的根据:

(1)∠2=∠5a∥b;

(2)∠4=∠5a∥b;

(3)∠3+∠5=180?a∥b.

2.如图,(在同一平面内)若两条直线a、b都和直线c垂直,那么这两条直线一定平行,这是为什么?

〖作业〗

P18.1、2、3.

篇7:《直线平行的条件》说课稿

教师展示一组练习,学生独立完成,巩固新知。

在这一环节中,教师应关注:

①学生能否画平行线,动手操作是否准确

②学生能否独立探究、参与、合作、交流

设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,,体现学以致用的观念,消除学生学无所用的思想顾虑。

3、大胆猜想,探究新知

篇8:《直线平行的条件》说课稿

一、教材分析

1、教材的地位和作用

本课位于人民教育出版社义务教育课程标准实验教科书七年级下册第五章第二节第一课时。主要内容是让学生在充分感性认识的基础上体会平行线的三种判定方法,它是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习它会为后面的学习习近平行线性质、三角形、四边形等知识打下坚实的“基石”。同时,本节学习将为加深“角与平行线”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,提高运用数学的能力。

2、教学重难点

重 点:三种位置关系的角的特征;会根据三种位置关系的角来判断两直线平行的方法。

难 点: “转化”的数学思想的培养。

由“说点儿理”到“用符号表示推理”的逐层加深。

二、教学目标

知识目标 了解同位角、内错角、同旁内角等角的特征,认识“直线平行”的三个充分条件及在实际生活中的应用。

能力目标 ①通过观察、思考探索等活动归纳出三种判定方法,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题。

情感目标 ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的.辩证唯物主义思想。

三、教学方法

1、采用指导探究法进行教学,主要通过二个师生双边活动:①动——师生互动,共同探索。②导——知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习几何方法的缺乏,和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、利用课件辅助教学,突破教学重难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程:

我的教学流程设计是:从创设情境,孕育新知开始,经历探索新知,构建模式;解释新知,落实新知;总结新知,布置作业等过程来完成教学。

创设情境,孕育新知:

①师生欣赏三幅图片,让学生观察、思考从几何图形上看有什么共同点。

②从学生经历过的事入手,让学生比较两张奖状粘贴的好坏,并说明理由,让学生留心实际生活,欣赏木工画平行线的方法。

③落实到学生是否会画平行线?本环节教师展示图片,学生观察思考,交流回答问题,了解实际生活中平行线的广泛应用。

设计意图:通过图片和动画展示,贴近学生生活,激发学生的学习兴趣。从学生经历过的事入手。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

2、实验操作,探索新知1

①由学生是否会画平行线导入,用小学学过的方法过点P画直线AB的平行线CD,学生动手画并展示。

②学生思考三角尺起什么作用(教师点拨)?

③学生动手操作:用学具塑料条摆两条平行线被第三条直线所截的模型,并探讨图中角的关系(同位角)。

④教师把学生画平行线的过程和塑料条模型抽象成几何图形,指明同位角的位置关系是截线,被截线的同旁,

归纳:两直线平行条件1

教师展示一组练习,学生独立完成,巩固新知。

在这一环节中,教师应关注:

①学生能否画平行线,动手操作是否准确

②学生能否独立探究、参与、合作、交流

设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,,体现学以致用的观念,消除学生学无所用的思想顾虑。

篇9:证明线面平行

一,面外一条线与面内一条线平行,或两面有交线强调面外与面内

二,面外一直线上不同两点到面的距离相等,强调面外

三,证明线面无交点

四,反证法(线与面相交,再推翻)

五,空间向量法,证明线一平行向量与面内一向量(x1x2-y1y2=0)

2

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面

3

篇10:证明线面平行

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的`直线必平行于另一个平面。

【平面与直线平行的性质】

定理:一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

此定理揭示了直线与平面平行中蕴含着直线与直线平行。通过直线与平面平行可得到直线与直线平行。这给出了一种作平行线的重要方法。

注意:直线与平面平行,不代表与这个平面所有的直线都平行,但直线与平面垂直,那么这条直线与这个平面内的所有直线都垂直。

3

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,

因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

本题就用到一个关键概念:重心三分中线

设E为BD的中点,连接AE,CE

则M在AE上,且有AM=2ME

N在CE上,且有CN=2NE

在三角形ACE中,

因为,EM:EA=1:3

EN:EC=1:3

所以,MN//AC

AC属于平面ACD,MN不在平面ACD内,即无公共点

所以,MN//平面ACD

篇11:怎么证明面面平行

怎么证明面面平行

怎么证明面面平行

线面垂直:1.一条线与平面内两条相交直线垂直

2.一条线在一个平面内,而这个平面与另外一个平面垂直,那么这条线与另外一个平面垂直

面面垂直:一条线与平面内两条相交直线垂直,且有一个平面经过这条线

2

证明:∵平面α∥平面β

∴平面α和平面β没有公共点

又a 在平面α上,b 在平面β上

∴直线a、b没有公共点

又∵α∩γ=a,β∩γ=b

∴a在平面 γ上,b 在平面γ上

∴a∥b.

3

用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

4

【直线与平面平行的判定】

定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

【判断直线与平面平行的.方法】

(1)利用定义:证明直线与平面无公共点;

(2)利用判定定理:从直线与直线平行得到直线与平面平行;

(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个

5

用反证法

命题:已知α∥β,AB∈α,求证:AB∥β

证明:假设AB不平行于β

则AB交β于点P,点P∈β

又因为P∈AB,所以P∈α

α、β有公共点P,与命题α∥β不符,所以AB∥β。

6

线线平行→线面平行 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

线面平行→线线平行 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

线面平行→面面平行 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

面面平行→线线平行 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

线线垂直→线面垂直 如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

线面垂直→线线平行 如果连条直线同时垂直于一个平面,那么这两条直线平行。

线面垂直→面面垂直 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

线面垂直→线线垂直 线面垂直定义:如果一条直线a与一个平面α内的任意一条直线都垂直,我们就说直线a垂直于平面α。

面面垂直→线面垂直 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

三垂线定理 如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。

篇12:《探索直线平行的条件》说课稿

学习目标:

1、经历探索直线平行的条件“同位角相等,两直线平行”,认识同位角。

2、经历观察、操作、想象、说理、交流等数学活动,发展空间观念和有条理地表达能力。

学习重点:

1、会正确识别图形中的同位角。

2、掌握直线平行的条件“同位角相等,两直线平行”。

3、发展空间观念和有条理地表达能力。

学习难点:

有条理地表达出问题分析和解决的过程。

导学过程:

【预习交流】

1、预习课本P6页到P8页,有哪些疑惑?

2、下面的图形中,直线a、b被c所截,所标出的角中有哪些角是同位角?同位角一定相等吗?

【点评释疑】

1、课本P6操作。

2、课本P6说一说。

两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二个角叫同位角。

同位角的特征:

①∠1、∠2分别在直线a、b的同侧(上方),并且都在直线c的.同旁。

②基本形状是“F”型。

想一想:在上面的图形中,还有没有其他的同位角?

归纳:同位角相等,两直线平行、

3、例1、如图:∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由。

解:(1)AB∥CD

∵∠1=∠C()

∴AB∥CD()

(2)AC∥BD

∵∠2=∠C()

∴AC∥BD()

4、应用探究

(1)如图,①∠2与∠4是直线、被直线所截成的同位角;②∠3与是同位角、

(2)如图,直线c与直线a、b相交,∠1=50°,当∠2为多少度时,a∥b?并说明理由。

解:当∠2=50°时,a∥b。

∵∠2=50°(已知)

∴∠3=∠2=50°()

∵∠1=50°()

∴∠=∠

∴a∥b()

你还有其它的说理方法吗?

(3)如图,竖在地面上的两根旗杆,你能说明它们平行的道理吗?

5、练习巩固

课堂练习:课本P7到P8练习1、2。

【达标检测】

1、如图,图中∠AEF的同位角有哪几个?根据“同位角相等,两直线平行”图中哪两个同位角相等,可得DE∥BC?哪两个同位角相等,可得EF∥BD?

2、如图9,由三个相同的含30°的三角板拼接成的图形,请找出图中有哪些直线平行(不增添新的字母)?并说明理由。

3、如图,∠1+∠2=180°,a与b平行吗?为什么?

4、(1)如图1,给出一个条件,使AC∥DE;再给出一个条件,使CD∥EF,并说明理由。

(2)如图2,∠DAC=130°,AE平分∠DAC,再给出一个条件,使AE∥BC,并说明理由。

(3)如图3,∠2=∠3,直线a与直线b平行吗?为什么?

【总结评价】

1、两条直线平行的条件:同位角相等,两直线平行及认识同位角。

2、合理、有条理的说明思维过程。

【课后作业】课本P9到P10习题7、11、2、3、4、

更多推荐

怎样证明两直线平行