小编在这里给大家带来数据挖掘技术在会计管理与分析的性研究分析论文,本文共13篇,希望大家喜欢!
篇1:数据挖掘技术在会计管理与分析的性研究分析论文
数据挖掘技术在会计管理与分析的实用性研究分析论文
随着会计现代化的发展,会计越来越多的运用计算机技术的拓展。
一、数据挖掘
数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜存有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。
二、数据挖掘的现代最新方法介绍
常用的数据挖掘方法主要有决策树(Decision Tree)、遗传算法(Genetic Algorithms)、关联分析(Association Analysis).聚类分析(C~smr Analysis)、序列模式分析(Sequential Pattern)以及神经网络(Neural Networks)等。
三、数据挖掘的实际应用
由于数据挖掘市场还处于起步的阶段,但是发展很快。在国外有一些著名的大公司对数据挖掘系统进行了开发。
1.Intelligent Miner这是IBM公司的数据挖掘产品,它提供了很多数据挖掘算法,包括关联、分类、回归、预测模型、偏离检测、序列模式分析和聚类。有2个特点:一是它的数据挖掘算法的可伸缩性;二是它与IBM/DB/2关系数据库系统紧密地结合在一起。
2.EineSet是由SGI公司开发的,它也提供了多种数据挖掘方法,包括关联分析和分类以及高级统计和可视化工具。特色是它具有的强大的图形工具,包括规则可视化工具、树可视化工具、地图可视化工具和多维数据分散可视化工具,它们用于实现数据和数据挖掘结果的可视化。
3.Clementine是由ISL公司开发的,它为终端用户和开发者提供提供了一个集成的数据挖掘开发环境。
4.DBMiner是由DBMiner Technology公司开发的,它提供多种数据挖掘算法,包括发现驱动的OLAP分析、关联、分类和聚类。特色是它的基于数据立方体的联机分析挖掘,它包含多种有效的频繁模式挖掘功能和集成的可视化分类方法
四、数据挖掘与管理会计
1.提供有力的决策支持
面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
2.赢得战略竞争优势的有力武器
实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。
3.预防和控制财务风险
利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据SEC的报告,美国银行、美国第一银行、联邦住房借贷抵押公司等数家银行已采用了数据挖掘技术。
五、数据挖掘在管理会计中的应用
1.作业成本和价值链分析
作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在Thomas G,John J和Il-woon Kim的调查中,数据挖掘被用在作业成本管理中仅占3%。
2.预测分析
管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。
3.投资决策分析
投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的`经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。
4.产品和市场预测与分析
品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。
5.财务风险预测与评估
管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。,数据挖掘技术包括多维判别式分析、逻辑回归分析、遗传算法、神经网络以及决策树等方法在管理会计中得到了广泛的应用。
六、结论
数据挖掘是个崭新的领域,对于数字和信息的处理是非常科学和方便的,也是非常高效率和合理分析的非常好的工具,对于会计管理领域的应用在国际上只是刚刚开始,相信随着会计的国际化的接轨和计算机科学的进步,在我国的会计领域中的数据挖掘理论会得到不断的提升,在管理会计实际应用中的数据挖掘也越来越多样化和普及化。
篇2:数据挖掘技术在会计管理与分析的性研究
【摘要】随着会计现代化的发展,会计越来越多的运用计算机技术的拓展。数据挖掘技术在数据处理和财会分析上具有独特的优越性。在会计管理和会计分析中,数据挖掘更是表现出极大的优越性。不仅为企业决策者提供更为广泛而有效的决策依据,而且可以提高企业战略竞争能力,更加提高了会计分析的准确性和高效率。
【关键词】数据挖掘;会计管理;计算机技术
一、数据挖掘
数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜在有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。数据挖掘是从数据当中发现趋势和模式的过程,它融合了现代统计学、知识信息系统、机器学习、决策理论和数据库管理等多学科的知识。它能有效地从大量的、不完全的、模糊的实际应用数据中,提取隐含在其中的潜存有用的信息和知识,揭示出大量数据中复杂的和隐藏的关系,为决策提供有用的参考。
篇3:数据挖掘技术在会计管理与分析的性研究
二、数据挖掘的现代最新方法介绍
常用的数据挖掘方法主要有决策树(Decision Tree)、遗传算法(Genetic Algorithms)、关联分析(Association Analysis).聚类分析(C~smr Analysis)、序列模式分析(Sequential Pattern)以及神经网络(Neural Networks)等。
三、数据挖掘的实际应用
由于数据挖掘市场还处于起步的阶段,但是发展很快。在国外有一些著名的大公司对数据挖掘系统进行了开发。
1.Intelligent Miner这是IBM公司的数据挖掘产品,它提供了很多数据挖掘算法,包括关联、分类、回归、预测模型、偏离检测、序列模式分析和聚类。有2个特点:一是它的数据挖掘算法的可伸缩性;二是它与IBM/DB/2关系数据库系统紧密地结合在一起。
2.EineSet是由SGI公司开发的,它也提供了多种数据挖掘方法,包括关联分析和分类以及高级统计和可视化工具。特色是它具有的强大的图形工具,包括规则可视化工具、树可视化工具、地图可视化工具和多维数据分散可视化工具,它们用于实现数据和数据挖掘结果的可视化。
3.Clementine是由ISL公司开发的,它为终端用户和开发者提供提供了一个集成的数据挖掘开发环境。
4.DBMiner是由DBMiner Technology公司开发的,它提供多种数据挖掘算法,包括发现驱动的OLAP分析、关联、分类和聚类。特色是它的基于数据立方体的联机分析挖掘,它包含多种有效的频繁模式挖掘功能和集成的可视化分类方法。
四、数据挖掘与管理会计
1.提供有力的决策支持
面对日益激烈的竞争环境,企业管理者对决策信息的需求也越来越高。管理会计作为企业决策支持系统的重要组成部分,提供更多、更有效的有用信息责无旁贷。因此,从海量数据中挖掘和寻求知识和信息,为决策提供有力支持成为管理会计师使用数据挖掘的强大动力。例如,数据挖掘可以帮助企业加强成本管理,改进产品和服务质量,提高货品销量比率,设计更好的货品运输与分销策略,减少商业成本。
2.赢得战略竞争优势的有力武器
实践证明数据挖掘不仅能明显改善企业内部流程,而且能够从战略的高度对企业的竞争环境、市场、顾客和供应商进行分析,以获得有价值的商业情报,保持和提高企业持续竞争优势。如,对顾客价值分析能够将为企业创造80%价值的20%的顾客区分出来,对其提供更优质的服务,以保持这部分顾客。
3.预防和控制财务风险
利用数据挖掘技术可以建立企业财务风险预警模型。企业财务风险的发生并非一蹴而就,而是一个积累的、渐进的过程,通过建立财务风险预警模型,可以随时监控企业财务状况,防范财务危机的发生。另外,也可以利用数据挖掘技术,对企业筹资和投资过程中的行为进行监控,防止恶意的商业欺诈行为,维护企业利益。尤其是在金融企业,通过数据挖掘,可以解决银行业面临的如信用卡的恶意透支及可疑的信用卡交易等欺诈行为。根据SEC的报告,美国银行、美国第一银行、联邦住房贷款抵押公司等数家银行已采用了数据挖掘技术。
篇4:数据挖掘技术在会计管理与分析的性研究
五、数据挖掘在管理会计中的应用
1.作业成本和价值链分析
作业成本法以其对成本的精确计算和对资源的充分利用引起了人们的极大兴趣,但其复杂的操作使得很多管理者望而却步。利用数据挖掘中的回归分析、分类分析等方法能帮助管理会计师确定成本动因,更加准确计算成本。同时,也可以通过分析作业与价值之间的关系,确定增值作业和非增值作业,持续改进和优化企业价值链。在Thomas G,John J和Il-woon Kim的调查中,数据挖掘被用在作业成本管理中仅占3%。
2.预测分析
管理会计师在很多情况下需要对未来进行预测,而预测是建立在大量的历史数据和适当的模型基础上的。数据挖掘自动在大型数据库中寻找预测性信息,利用趋势分析、时间序列分析等方法,建立对如销售、成本、资金等的预测模型,科学准确的预测企业各项指标,作为决策的依据。例如对市场调查数据的分析可以帮助预测销售;根据历史资料建立销售预测模型等。
3.投资决策分析
投资决策分析本身就是一个非常复杂的过程,往往要借助一些工具和模型。数据挖掘技术提供了有效的工具。从公司的财务报告、宏观的经济环境以及行业基本状况等大量的数据资料中挖掘出与决策相关的实质性的信息,保证投资决策的正确性和有效性。如利用时间序列分析模型预测股票价格进行投资;用联机分析处理技术分析公司的信用等级,以预防投资风险等。
4.产品和市场预测与分析
品种优化是选择适当的产品组合以实现最大的利益的过程,这些利益可以是短期利润,也可以是长期市场占有率,还可以是构建长期客户群及其综合体。为了达到这些目标,管理会计师不仅仅需要价格和成本数据有时还需要知道替代品的情况,以及在某一市场段位上它们与原产品竞争的状况。另外企业也需要了解一个产品是如何刺激另一些产品的销量的等等。例如,非盈利性产品本身是没有利润可言的,但是,如果它带来了可观的客户流量,并刺激了高利润产品的销售,那么,这种产品就非常有利可图,就应该包括在产品清单中。这些信息可根据实际数据,通过关联分析等技术来得到。
5.财务风险预测与评估
管理会计师可以利用数据挖掘工具来评价企业的财务风险,建立企业财务危机预警模型,进行破产预测。破产预测或称财务危机预警模型能够帮助管理者及时了解企业的财务风险,提前采取风险防范措施,避免破产。另外,破产预测模型还能帮助分析破产原因,对企业管理者意义重大。,数据挖掘技术包括多维判别式分析、逻辑回归分析、遗传算法、神经网络以及决策树等方法在管理会计中得到了广泛的应用。
六、结论
数据挖掘是个崭新的领域,对于数字和信息的处理是非常科学和方便的,也是非常高效率和合理分析的非常好的工具,对于会计管理领域的应用在国际上只是刚刚开始,相信随着会计的国际化的接轨和计算机科学的进步,在我国的会计领域中的数据挖掘理论会得到不断的提升,在管理会计实际应用中的数据挖掘也越来越多样化和普及化。
篇5:与临床医学数据挖掘分析相关论文
与临床医学数据挖掘分析相关论文
1DM概述
DM是数据库知识发现(knowledgediscoveryindatabase,KDD)不可缺少的一部分,而KDD是将未加工的数据转换为有用信息的整个过程,包括一系列转换步骤,从数据的预处理到DM的后处理[1]。其最早是在1989年举行的第11届美国人工智能协会(americanassociationforartificialintelli-gence,AAAI)学术会议上提出的,是近年来随着人工智能和数据库技术的发展而出现的一门新兴技术,其开发与研究应用是建立在先进的计算机技术、超大规模数据库的出现、对巨大量数据的快速访问、对这些数据应用精深的统计方法计算的能力这4个必要条件基础上的,以数据库、人工智能和数理统计三大技术为支柱。
2DM的基本模式及在临床医学中的应用
DM的任务通常有两大类:预测任务和描述任务。预测任务主要是根据其他属性的值,预测特定属性的值,主要有分类(classificaion)和回归(regression)2种模式。描述任务的目标是导出概括数据中潜在联系的模式(相关、趋势、聚类、轨迹和异常),主要有关联分析、聚类分析、异常检测3种模式。
2.1预测建模(predictivemodeling)
涉及以说明变量函数的方式为目标变量建立模型。有2种模式:分类和回归。分类是用于预测离散的目标变量。在临床医学中,疾病的诊断和鉴别诊断就是典型的分类过程。Melgani和Bazi以美国麻省理工学院的心律失常数据库的'心电图为原始数据,采用不同分类模型,对心电图的5种异常波形和正常波形进行分类。回归是用于预测连续的目标变量。回归可广泛应用于医学研究中如医疗诊断与预后的判别、多因素疾病的病因研究等。Burke等采用各种回归模式对影响乳腺癌患者预后的因素进行回归分析。
2.2关联分析(associationanalysis)
用来描述数据中强关联特征的模式,用于发现隐藏在大型数据集中的令人感兴趣的联系。所发现的模式通常用蕴函规则或特征子集的形式表示。关联分析主要应用于DNA序列间相似搜索与比较、识别同时出现的基因序列、在患者生理参数分析中的应用、疾病相关因素分析等。有学者对37000例肾病患者进行了追踪观察,监测肾小球过滤率、尿蛋白水平和贫血状况,结果发现以上3种生理指标中的任何一项异常都伴随着心脏病发病率的上升,这种肾病与心脏病“关联”的现象可发生在肾病的早期阶段。
2.3聚类分析(clusteranalysis)
旨在发现紧密相关的观测值组群,使得与属于不同簇的观测值相比,属于同一簇的观测值相互之间尽可能类似。聚类分析在医学领域中主要用于DNA分析、医学影像数据自动分析以及多种生理参数监护数据分析、中医诊断和方剂研究、疾病危险因素等方面。罗礼溥和郭宪国利用聚类分析对云南省25县(市)现有的112种医学革螨的动物地理区划进行分析,发现云南省医学革螨的分布明显地受到自然地理区位和特定的自然景观所制约。
2.4异常检测(anomalydetection)
用来识别其特征明显不同于其他数据的观测值。这样的观测值称为异常点(anomaly)或离群点(outlier)。异常检测的目标是发现真正的异常点,避免错误地将正常对象标注为异常点。换言之,一个好的异常检测器必须具有高检测率和低误报率,其主要应用于检测欺诈、网络攻击、疾病的不寻常模式等。
3DM的方法及研究趋势
在DM算法的理论基础上,DM常用方法:
(1)生物学方法包括人工神经网络、遗传算法等;
(2)信息论方法包括决策树等;
(3)集合论方法包括粗糙集理论、近邻算法等:
(4)统计学方法;
(5)可视化技术等方法。
DM经过十几年的蓬勃发展,很多基本算法已较为成熟,在其基础上进行更加高效的改进和算法提高显得比较困难,如传统的频繁模式和关联规则挖掘在近几年的国际著名会议和期刊上已不再作为重要的研究主题。近年来众多国内外知名学者相继探讨DM的最新方向。Yang和Wu汇总形成了DM领域十大挑战性问题报告;Agrawa等探讨了DM的现状并展望了未来的发展方向,Piatetsky-shapiro等讨论了DM新的挑战性问题,并主要探讨在生物信息学(bioinformatics)、多媒体挖掘(multimediamining)、链接挖掘(1inkmining)、文本挖掘(textmining)和网络挖掘(webmining)等领域所遇到的挑战。与国外相比,DM在国内的研究和应用始于20世纪90年代初,主要是对DM方法的介绍和推广,20世纪90年代后期和21世纪初进入蓬勃发展阶段,当前DM已成为大型企业进行经营决策时所必须采用的方法,证券和金融部门已将DM作为今后重点应用的技术之一。有学者以HIS和LIS数据库信息为数据源,人工神经网络为工具,概率论为依据,对常规检验结果和质谱指纹图数据进行DM并应用于临床实践。
4临床医学DM的特点
DM作用于医学数据库跟挖掘其他类型的数据库相比较,具有其自己的特点。以电子病历、医学影像、病历参数、化验结果等临床数据为基础建立的医学数据库是一个复杂类型数据库,这些临床信息具有隐私性、多样性、不完整性、冗余性、异质性和缺乏数学性质等自身的特殊性和复杂性,使得医学DM与常规DM之间存在较大差异。医学DM方法包括统计方法、机器学习方法、神经网络方法和数据库方法等。将这些不同的挖掘方法应用到疾病的诊断、治疗和预后分析以及医疗管理等各个领域,从疾病的诊治、医疗质量管理、医院管理、卫生政策研究与医疗资源利用评价等方面去获取诸如概念、规律、模式等相关知识;用于对疾病进行分类、分级、筛选危险因素、决定治疗方案和开药数量等。
5我国医学DM的现状及展望
生命科学的快速发展以及系统生物学(systembiology)的出现和蓬勃发展为研究现代医学模式和中医药学提供了可能的新思路和新方法。通过基因组学、蛋白质组学等方法阐述复杂生命迫切需要DM等相关计算分析方法处理海量的基因、蛋白、染色质数据如基因调控网络的研究、蛋白质交互网络的挖掘等。在我国医学数据极为丰富,但运用DM技术分析和处理这些数据资源的研究尚处于起步阶段。有些大学(如第二军医大学、哈尔滨医科大学、泸州医学院等)已经面向医学本科生及研究生开设了相关课程,上海交通大学医学院也向医学专业研究生开设了《生物医学数据挖掘》的课程,泸州医学院检验医学系开设了《检验医学信息学》课程,从检验医学信息的来源、综合、提炼和利用过程均进行了详细介绍。这些课程的开设旨在使学生及医学科学研究者了解这些知识,能理性地应用这些数学工具,并建立和其他学科领域研究人员合作的基础。医学DM是一门涉及面广、技术难度大的新兴交叉学科,是计算机技术、人工智能、统计等技术手段与现代医疗相结合的产物,需要从事计算机、统计学的科研人员与广大医务工作者之间的通力合作。随着理论研究的深入和进一步的实践摸索,医学DM必将在疾病的诊疗、医学科研与教学以及医院管理等方面发挥不可估量的巨大作用。
篇6:大数据崛起与数据挖掘分析论文
在人类生活和社会生产的各个行业中都需要运用到大数据,极大提高了人们的生活质量和社会生产的效率[1]。但是当今社会是技术更新日新月异的时代,为了促使大数据更好为人类提供服务以及促进其自身的不断崛起,需要挖掘更加丰富、有效且多元化的数据信息内容,才能满足社会发展的需求,也能有效巩固大数据在社会发展中的重要地位。
1相关概述
1.1大数据
大数据又被称为巨量数据,其是在物联网、云制造技术影响下产生的一种新型的信息处理模式,通过分析信息资产的变化规律,从而使信息处理具有更高的流程优化能力和决策洞察能力。
1.2大数据崛起
大数据风暴已影响到全世界的各个角落,在社会中的各个领域都需要通过数据分析各行业的运营情况,并根据数据分析结果作好相应的决策与判断,因此,大数据已在社会中得到广泛使用并快速崛起。企业通过将所有的业务数据信息进行整合分析,形成高速、真实及多样的管理模式,将能有效降低企业业务操作的资源损耗,同时还能有效提升企业工作的质量和效率[2]。
1.3数据挖掘
数据挖掘技术是一种新兴的科学技术,是由网络技术发展而来的,其不仅能用来分析具有特定规律的事物,同时对于数据量较大且复杂的数据信息其也能发掘其中的联系,并利用有效的技术手段,将复杂的数据信息从数据库中抽离出来,采用自身的编辑、处理及合成功能集合数据信息,供人们分析和使用[3]。
1.3.1基本特点
数据挖掘也可以被理解为数据分析,它的主要特点是能够对数据库中的各项数据进行分析、抽取、模型处理以及转换等,提取其中的关键性数据辅助人们进行企业生产决策,并能取得良好的效果。相较于传统的数据分析,其是在数据未知的情况下进行信息挖掘,因此,数据挖掘的三大基本特征是未知、实用性强、有效。在进行数据挖掘过程中可采用分类、聚类、决策树、关联规则等多种不同的分析方式进行数据信息发掘。
1.3.2基本步骤
数据挖掘一般分为数据准备、数据挖掘、运用管理、计算知识提取数据信息三个步骤。(1)数据准备,也就是要明确数据目标,在数据库中检索出符合条件且能被运用的数据,并做好分类、编辑等准备工作。(2)数据挖掘,根据数据挖掘的要求和目标,选择科学、合理的分析和计算方法,找出数据信息的特征和数据之间的联系,并归纳数据的应用价值表现[4]。(3)运用管理、计算知识提取数据信息,对于数据信息的总结还需进行实践与评估,也就是将得出的数据结论运用到实践工作中,通过实践结果判定其数据发掘分析过程的正确与否。
2数据挖掘的应用
数据挖掘被应用到市场营销、工业制造、科学研究、教育领域、医学领域、通讯行业以及网络技术应用等多个领域,对行业发展具有重要影响。(1)市场营销是最早开始使用数据挖掘技术的领域,也是目前应用大数据最多的领域,市场营销工作要取得良好的营销效果就必须充分发掘用户的消费习惯和分析其消费特点,而这些结论都需要通过对其消费的数据信息进行深入的分析,了解其中的规律,以此来判定用户的消费需求和消费能力,从而改进或转变企业的营销思路,提高企业营销业绩。通过数据分析的延伸,在市场营销方面已不仅仅包含传统的实体物品营销,对于银行、保险、电子商务以及金融领域,也可通过数据挖掘和分析市场经济的走势,为自身行业客户带来经济利益的同时,也有效促进了自身行业的发展[5]。(2)工业制造,通过分析工业制造行业的各种零部件生产数据以及分析产品缺陷,能够快速找出影响产品生产率的相关因素,在后续的工作中则会尽力减少和避免因素影响对产品造成的损坏,从而有利于提高工业产品的生产效率和良品率,将能有效促进企业的快速发展。(3)科学研究,科学研究一般都需要进行大量的数据观测和实验论证,才能获得有效的科学结论和找出某种事物的科学发展规律,而数据观测和实验论证都离不开数据的支持,利用数据挖掘技术能够快速找出科学数据之间的联系、变化规律以及科学家肉眼无法识别的科学知识,通过对相关数据信息进行科学的分析和计算,能有效降低科学研究的难度,使科学研究变得更加直观和简便。对于DNA数据、外空星体数据的探索,采用大数据分析相较于传统数据分析容易得多。(4)教育领域,其涉及教学资源的最优化配置、教学管理方式、学生心理发展状态、学习情况、教学评价以及综合素质发展等多项教学工作内容,为了使各项工作都能和谐、稳定、健康进行,需采用数据挖掘技术来实现教学管理者统筹和规划各项工作。(5)医学领域,医学数据和决策的正确与否与人类的生命安全息息相关,为了保证医疗决策数据的准确性和高效性,可采用数据挖掘技术对医疗信息数据进行有效的分析,为医疗决策提供安全保障[6]。(6)网络技术应用,数据挖掘技术是由网络技术发展而来的,因此,其与网络技术是相辅相成的关系,一方面网络技术的快速发展能有效促进数据挖掘技术的提高,另一方面数据挖掘技术可提高网络技术的发展速度,通过数据挖掘能有效提高电子商务、搜索引擎等相关网络技术的使用效率,例如得到用户需搜索的信息便可通过数据挖掘技术中的预测分类算法来实现。(7)通讯行业,通讯行业与网络技术和数据挖掘技术的发展都有着必然的联系,其不仅包含了市场营销,还包含了通讯技术和服务,而这些资源要进行有效和无缝连接需将行业内大量的复杂数据进行集合,找出各项数据信息的发展规律,然后作出正确的决策。例如,对于用户通信行为、系统负载、企业利润率、数据通信容量和速率等数据信息,需采用聚类方法和孤立点分析的方式,找出行业内的异常状态和影响行业发展的因素,从而能够及时采取有效的措施解决制约问题,促进通讯行业快速发展。
篇7:大数据崛起与数据挖掘分析论文
3.1大数据的崛起离不开数据挖掘的支持在人们的生活和工作中都需要应用到数据,数据的变化代表着人们行为的改变以及社会生产力的变化,而人类进行生产最主要的目的`在于促进社会经济的不断发展,因此,需要对各项生产信息数据进行深入和有效的挖掘和分析,找出事物之间的联系和生产变化的规律,目的在于根据现有的规律,预测其未来的发展方向,因此,数据挖掘技术越来越重要。而数据挖掘技术的重要性使人们对大数据的作用有了更加全面和深刻的了解,因此,要不断提升自身的数据挖掘能力,从而促进大数据技术不断崛起[7]。3.2大数据崛起有助于提高数据挖掘的工作效率任何一个实力雄厚的企业,其自身的技术能力一般不会太差,大数据崛起就说明了大数据挖掘技术已变得相当规范,从大数据技术被广泛运用到各行各业中可以看出。并且大数据的崛起,使得大数据分析的各方面技能都相对成熟,其能使数据发掘工作变得更加实用和高效,从而更好为人们提供优质的数据信息服务。
4结语
当今社会是知识、数据爆炸的时代,大数据知识和技术的快速发展改变了人们原有的生活和工作方式。其被广泛应用于市场营销、工业制造、科学研究、教育领域、医学领域、通讯行业以及网络技术应用等多个领域,有效推动了社会经济的快速发展。而大数据的崛起与数据挖掘技术又有着密切的联系,数据挖掘技术的快速发展使得大数据能够为人们提供实用和高效的数据信息服务,从而使人们在生活和工作中,能够利用数据变化的规律或事物数据之间的联系,研究出其未来的发展趋势,从而作出正确的决策,因此数据挖掘技术能有效提高人们的生产、制造水平和效率,并且能为人类企业生产的决策提供科学、合理的数据依据,使得人类的各项活动能够安全、快速开展[8]。
参考文献
[1]卢建昌,樊围国.大数据时代下数据挖掘技术在电力企业中的应用[J].广东电力,(9):88-94.
[2]马遥.计算机数据挖掘技术在CBA联赛中的应用理论研究[D].郑州:郑州大学,2014.
[3]曹莉.刍议大数据时代的数据挖掘与精细管理[J].经营管理者,(18):191-192.
[4]李平荣.大数据时代的数据挖掘技术与应用[J].重庆三峡学院学报,2014(3):145-147.
[5]韩英.浅析大数据时代的数据挖掘与精细管理[J].成都航空职业技术学院学报,2013,29(4):63-71.
[6]丁岩,杨庆平,钱煜明,等.基于云计算的数据挖掘平台架构及其关键技术研究[J].中兴通讯技术,2013,19(1):53-56,60.
[7]赵倩倩,程国建,冀乾宇,等.大数据崛起与数据挖掘刍议[J].电脑知识与技术,2014(33):7831-7833.
[8]王元卓,靳小龙,程学旗,等.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138.
篇8:大数据自动分析与数据挖掘探讨的论文
大数据自动分析与数据挖掘探讨的论文
近些年来,信息科技和网络的通信技术已经得到了飞速的发展,并且全国的信息基础设施也得到了完善,在全球的数据已经呈现出了极速增长的模式状态。在此种情况下,传统的数据处理方式已经满足不了现代化的处理需求,因此需要利用大数据的自动分析和数据挖掘来实现对数据的有效分享和利用。大数据科学已经成为了一个横跨信息科学、社会科学以及网络科学的新型交叉学科,受到了学术界的广泛关注。
一、遥感大数据的概述以及特征
在现代社会当中,遥感大数据已经成为了大数据的重要代表,成为了科学研究方面的重点研究方面,但是在现阶段当中还需要对其科学理论和方式进行不断的深入研究。遥感大数据具有大数据的特征,并且也具有自身独特的特征。在外部特征方面,首先具有海量的特征。遥感大数据的数据具有海量的特点,并且对着遥感技术的不断发展,在现阶段当中的高分辨率和高动态的新型卫星传感器在单位时间之内可以捕获到更多的数据量;其次还具有数据异构的特点,也就是说在数据生产过程当中所依赖到的业务系统之间会呈现出的不同状态,都需要由不同的数据中心来进行提供的,并且在逻辑结构或者组织方式上也呈现出了不同的特点;另外,还具有数据多源的特点,集中体现在数据的来源和捕获信息的手段方面,是可以拥有多种获取形式的,包括全球的观察网络点接收到的实时信息,以及民众手中的用户端的个性化信息。在内部特征方面,首先具有高维度性的特点,遥感大数据的数据类型呈现出了多样化的特点,因此数据当中的维度也变得越来越高,集中体现在了空间维度、时间维度以及光谱维度等。其次还具有多尺度性的.特点,成为了遥感大数据的重要特点,也就是说在进行数据的获取过程当中,可以根据不同的遥感技术和相对应的技术水平,来进行有效的划分,在空间和时间上呈现出多尺度的特点。另外,还具有非平稳性的特点,由于遥感大数据广泛的获取方式和物理意义,在信息理论的角度上来说,就属于典型的非平稳信号,呈现出分布参数或者规律随时发生变化的特点。
二、遥感大数据的自动分析和数据挖掘
2.1自动分析。首先,需要对遥感大数据的表达进行了解,在这个过程当中需要抽取多元化的特征来进行表示,从而建立起遥感大数据的目标一体化,在研究过程当中主要包括对遥感大数据的多元离散特征的有效提取,形成在不同的传感器当中的提取方式和方法。还要对若干大数据的多元特征进行归一化的表达,从而提升对大数据的处理能力和处理效率。其次就需要对遥感大数据进行相关的检索,在检索过程当中,需要利用网络化和集成化的方式进行检索,制定出基础设施的计划,提升对其数据的访问和检索效率。并且针对海量的遥感大数据来会说,需要检索出符合用户需求和感兴趣的内容和数据,就需要对数据内容进行比对,从而判断出用户所需要的内容,从大量的数据当中进行快速的检索到目标。在检索的过程当中,发展知识驱动的遥感大数据的检索方式是最有效的方式之一,可以分为场景检索服务、多源海量复杂场景数据的智能检索以及信息数据的检索等。另外,就是对遥感大数据的理解的,通过遥感大数据的科学,可以实现数据向知识的有效转变,在这个过程当中就需要根据遥感大数据本身的特征和数据检索的方式来对数据内容实现有效的提取。最后就是遥感大数据云的技术,可以将各种方式的遥感信息资源进行有效的整合,建立起遥感云服务的相关新型业务应用和服务模式,可以将在天空当中的传感器所捕捉到的信息通过软件的计算和整合来实现数据资源的有效存储和处理,从而使得用户可以在很快的时间之内获取到有效的服务。
2.2数据挖掘。首先需要对遥感大数据的数据挖掘过程进行了解,包括数据的获取、存储以及处理和整合等,在整个过程当中都具有大数据的特点。在进行捕获数据的过程当中可以从各种不同的传感器当中进行获取,然后对数据进行采样和过滤,之后就可以对采集到的数据进行处理和分析,最后将其数据用可视化的模式进行显示,方便了客户的使用和利用。其次,就是遥感大数据和广义的遥感大数据的综合挖掘的过程,利用此种方式,一方面可以与其他的数据方式形成良好的互补关系,另外一方面也可以对其数据当中的变化规律以及其他信息进行更好的挖掘和采集。在广义的遥感时空大数据当中,存储的费用是相当昂贵的,并且在数据的分析能力方面也存在严重不足的现象,因此在现代社会的智慧城市的建设过程当中发挥不了其巨大的作用,因此需要利用其他自动化的数据智能处理和挖掘的方式来对其空间地理分布的数据进行全新的挖掘和过滤。在时空分布的视频数据挖掘过程当中,在对智能数据进行处理和信息提取的同时,还要通过时空当中所分布的视频数据进行自动化的区分,来有效的区分正常和非正常的状态。在对时空数据的挖掘过程当中,主要可以从时空数据当中进行提取出隐藏的有用的信息知识,利用各种综合性的方式和方法,比如统计法、聚类法、归纳法以及云理论等。在遥感大数据的挖掘应用方面,可以适用于地球各种尺度和方位的变化,还可以在很大程度上对未知的信息进行良好的筛选和挖掘,推动国家的科学技术的发展,实现社会的可持续化发展。
综上所述,在不断的发展过程当中,我国的遥感数据的种类和数量将呈现出飞速增长的模式,在很多方面以及领域当中已经开展了遥感大数据的研究工作。值得注意的是,现阶段当中需要将遥感大数据的理论知识进行实践化的转变,从而实现遥感大数据的自动分析和数据挖掘功能,推动科学信息的不断进步。
参考文献
[1]宋维静,刘鹏,王力哲,等.遥感大数据的智能处理:现状与挑战[J].工程研究-跨学科视野中的工程,2014,(3):259-265.
篇9:我国的数据挖掘技术现状分析论文
摘要:数据挖掘学科的出现, 是对计算机领域的补充, 在计算机领域的发展下发展迅速, 引起了国内的重视, 并在国家的大力促进下不断发展, 取得了阶段性的成就, 但是发展现状仍然不容乐观, 本篇文章将针对数据挖掘的定义以及国内的现状进行分析, 并对其发展趋势进行预测, 目的在于加快我国的数据挖掘技术研究进程。
关键词:数据挖掘; 中国; 现状; 发展;
0 引言
随着计算机的发展与数据量的增加, 其对于数据的处理技术如生成、收集、储存数据等的水平要求越来越高, 因此新型的数据挖掘技术的出现是必然趋势, 替代了传统落后的数据处理技术。我国对于数据挖掘技术的研究已经取得瞩目的效果, 但是应用程度不高, 提高数据挖掘技术的实际应用成为了主要的问题, 需要采取必要措施加快数据挖掘技术应用进程。
1 数据挖掘的定义
数据挖掘 (DM) 是一个新兴的学科, 学名叫做数据库中发现知识 (KDD) , 其出现在20世纪90年代, 并在这三十年间发展迅速, 它的主要工作领域为数据库系统以及数据库应用领域, 其作用在于能够从应用数据中提取隐藏的关键信息与知识, 应用数据的范围广泛, 不管是不完整的数据, 还是受干扰的数据, 数据挖掘技术都能够通过对其数据的转换分析或者模块化处理进行识别与筛选, 并提取和处理其中的有用信息。数据挖掘的目的在于通过对数据中信息的处理, 筛选关键数据, 发现被忽略的数据, 从而寻找数据中的规律, 为决策者提供合理科学的数据分析报告, 帮助其作出最优化的决策。
数据挖掘技术学科的本质在于加深对数据的使用层次, 挖掘数据的内在含义并进行抽象化的概括, 改变了以往数据只能简单查询的低级层次。数据挖掘具有先知性、实用性以及科学性的特点, 同时数据挖掘的发展依赖于数据库、人工智能统计学等计算机学科的快速发展, 因此吸引了一大批专业人才加入到其的研发过程中, 加快了其的研究发展进程。
篇10:我国的数据挖掘技术现状分析论文
2.1 研究现状分析
我国开展数据挖掘技术的研究在1993年, 中科院合肥分院成为首个被自然科学基金支持进行数据挖掘技术研究, 从此以后, 我国掀开了研究数据挖掘研究的序幕, 主要研究机构与人员主要是相关专业的大学教授以及一些数据处理研究机构。近年来, 我国对数据挖掘的研究工作高度重视, 通过中国自然科学基金等对其进行资金支持, 同时, 政府创立“九五”计划以及“863”计划对其提供政策支持。
数据挖掘的研究引起了我国相关专业的人才的广泛关注, 并在全国范围内掀起了研究数据挖掘知识技术的理论与实际应用的热潮, 其中包括高等学府与科研机构。例如:对于数据挖掘技术的算法计算与改造研究是复旦大学与华中理工大学等高校的研究方向, 非结构化数据知识的网页数据挖掘技术是南京大学的主要研究方向, 而科研机构如北京系统工程研究院来说, 其主要研究方向是数据挖掘技术在模糊信息中的实际应用。
2.2 应用现状分析
在我国, 能够真正应用数据挖掘技术并取得成就的公司包括是广州华工明天科技有限公司以及菲奈特-融通企业, 其中广州华工明天科技有限公司主要进行多功能数据挖掘设备的研发, 而菲奈特-融通企业依赖于数据挖掘软件的发展进行其商业智能套件的研发。
2.3 研究成果分析
近年来, 由于国家的大力扶植与资金支持, 我国数据挖掘技术研究取得了重要性的成果, 在亚太数据挖掘的国际会议中, 由南京大学周志华带队的数据挖掘技术研究小组表现突出, 同时参与数据挖掘编程大赛并夺得桂冠;同样在了亚太数据挖掘国际会议上, 中国香港大学的电子商业科技研究院的黄哲学教授的论文获得亚太数据挖掘国际会议论文大奖。
2.4 国内外对比
国内外的数据挖掘技术研究的进程具有很大的差距, 不仅表现在相关理论的研究上, 更在于对数据挖掘技术的实际应用的方面。与国外的数据挖掘技术研究进程相比, 我国的研究起步晚, 仍然处于发展的初级阶段, 并且还没有成熟的理论与技术应用成果, 目前的主要研究方向是对于数据的初级处理如模糊化处理, 技术尚不成熟。
国外关于数据挖掘技术的软件研发发展已经取得瞩目的成就, 而国内的软件研发尚不成熟, 研究的重心在于高等学府的人才, 同时都是属于政府资助项目, 可能导致其成果要求较低, 从而阻塞了研发的步伐。
3 数据挖掘在我国的未来发展
3.1 研究方向展望
近年来, 随着计算机科学领域的快速发展, 数据挖掘技术作为一种新兴的学科, 其研究热度正在逐渐升温, 研究的'水平也在逐步提高, 同时由于政府的政策支持与资金支持, 越来越多的数据专业研究者被吸引加入其中。在数据挖掘技术未来的研究过程中, 其主要方向应包括以下几点:
(1) 参照于SQL语言的标准化的研究成果, 对数据挖掘技术进行形式化的描述, 即发现数据语言。 (2) 为实现关于数据额挖掘技术人机交互工作的顺利开展, 应满足用户对知识发现过程的可视化进程。 (3) 研究在计算机领域的数据挖掘技术的发展, 可以通过数据挖掘服务器的有效配合的方式实现。
3.2 面临的问题
(1) 挖掘方法与人机交互问题。我国数据挖掘技术的发展受限制于挖掘方法, 不管是知识类型的限制, 还是维度上的限制, 都是影响其发展的重要因素。 (2) 性能问题。能够有效的解决数据挖掘技术算法中的问题是解决其性能问题的关键, 应对其有效性、可伸缩性等问题进行研究, 保证其算法能够满足用户的性能要求。 (3) 数据类型多样性问题。对于算法复杂的, 多维度的数据类型, 现有的研究水平很难去解决此类问题, 同时对于多跨度的全球化信息技术的挖掘水平仍然落后。
4 结束语
数据挖掘技术作为新兴的数据应用工具, 能够有效的加强对数据的处理程度, 但是由于我国研发起步晚, 导致我国的发展水平落后与国外水平。近年来, 国家对数据挖掘技术的政策与资金支持, 掀起了研究的热潮。我国应重视数据挖掘算法研究以及其实际应用, 不断地发展数据挖掘技术的研究。
参考文献
[1]谢邦昌, 李扬.数据挖掘与商业智能的现况及未来发展[J].统计与信息论坛, (05) :94-96.
[2]李菁菁, 邵培基, 黄亦潇.数据挖掘在中国的现状和发展研究[J].管理工程学报, (03) :10-15.
篇11:探究数据挖掘技术在水利工程管理论文
探究数据挖掘技术在水利工程管理论文
1 引 言
我国长期以来兴建了一大批水利工程,初步形成了具有防洪、排涝、灌溉、供水、发电、养殖、种植、旅游等功能要素的水利工程体系,为国民经济的高速发展发挥了巨大的基础作用和支撑作用。 在水利工程建设取得辉煌成就的同时,人们逐渐意识到我们在水利工程的管理上还存在着手段比较落后,重建轻管、水利资源利用率低等突出问题,致使一大批水利工程不能发挥其价值,或者工程寿命大大缩短。 穆范椭 等分别从制度管理、机制管理、人力资源管理等几个方面对水利工程管理中存在的问题进行了论述,并提出了不少可行性的解决措施。 不可否认,水利工程管理中出现的问题,不少是制度上的问题,但水利工程管理有其特殊性、复杂性,需要广博的知识和高超的技术,单纯靠“软管理”是不能从根本上解决问题的,必须借助一些现代化的信息手段来辅助进行决策和管理, 才能够更好、更科学地解决问题。
近年来,在水利工程信息化的过程中,我国建设了一大批水利工程管理信息系统,对于水利工程的建设和运行管理起到了很好的帮助作用。 但是,这些系统所提供的功能大多是业务型的,很少面向管理决策。 随着水利工程管理向现代化纵深发展, 这些系统远远满足不了人们的需要。 另一方面,水利工程管理信息系统在发展过程中积累了海量的数据,不少是空间类型的数据,而且这些数据还在不断地增长,而相比于数据的生产、运输和累积能力,人类对空间数据的分析能力还很落后 。 人们虽然深知这些海量数据中蕴含了很多有价值的知识,但是不知道如何利用它们, 而依靠传统的信息系统是解决不了这些问题的。数据挖掘技术的出现为这些问题的解决带来了可能。 所谓数据挖掘,就是从海量数据中发现潜在的、有价值的知识的过程。 传统的数据挖掘技术和方法一般作用于非空间数据,而水利工程管理方面的数据不但有非空间数据,还有大量的空间数据。 和非空间数据相比,空间数据除了具备非空间数据的特征外,还有拓扑、方位和距离等非空间特征,因此其挖掘技术的实现有其特殊性。 在武汉大学李德仁院士首次提出空间数据挖掘这一概念后,国内外不少学者为此开展了广泛的研究。
2 空间数据挖掘在水利工程管理中应用需要解决的主要问题
水利工程管理信息系统中存在着大量的空间数据,因此需要采用空间数据挖掘技术。 和一般的空间数据挖掘系统相比,对水利工程数据的挖掘需要考虑其历史发展因素和特殊性。 首先,水利工程是一个系统工程,其有效管理往往需要多领域、多部门的专家相互协作,一项重要决策的做出往往需要对历史数据从各种维度进行分析,反复考虑各种因素,综合各个专家的意见才能形成,而不同的专家和决策者会从不同的角度来分析数据,因此对水利工程数据的挖掘需要交互探查或查询驱动的方法,在技术实现上需要采用数据仓库和数据立方体支持这种探查式的、快速的联机查询和分析。 其次,在用的水利工程信息系统的主体是 GIS (Geographical Information System, 地理信息系统),大部分的空间数据是由 GIS 系统生成的,空间数据的查询、计算、分析和可视化显示是一种复杂的技术,因此如何利用原有的 GIS 系统中的数据,数据挖掘如何和 GIS 集成以进行复杂的空间数据处理成为一个需要解决的重要问题。最后,要实现水利工程的数据挖掘,需要建立一个数据挖掘系统模型,模型在系统工程的研究、设计和实现中是一个非常重要的问题,一个好的模型对了解系统本质特征、揭示系统的规律起到非常重要的作用,建模也是实现一个工程系统的重要一步。 因此,要想实现空间数据挖掘技术在水利工程管理中的应用,这 3 个问题是我们不可回避的、必须研究的核心问题。
3 空间数据仓库
水利工程信息化的过程中产生了海量的数据,而数据仓库是处理海量数据的关键技术,它可以将不同来源的数据统一到语义上一致的环境下。 在水利工程信息系统中除了有丰富的非空间数据外,还有大量的空间数据,如地图、预处理过的遥感图像、视频等。 空间数据与非空间数据相比,除了具备传统数据库数据的特征外,还携带了空间特征,如拓扑、方位、距离等。 “空间数据仓库是面向主题的、集成的、时变的和非易失性的.非空间数据和空间数据的集合”, 用于支持空间数据挖掘和与空间数据相关的决策过程。 建立空间数据仓库是一个具有挑战性的工作,需要解决两个方面的问题:集成来自异构数据源和系统的空间数据;如何在空间数据仓库中实现快速而灵活的联机分析处理。
影响水利工程建设和管理决策的数据来源是丰富多样的,如气象数据库、蓄滞洪区空间分布式社会经济数据库、雨情和水情数据库、水旱灾情数据库等,它们往往存在于异构的环境中,可能来自于不同的系统,数据格式多种多样。 数据格式不仅与特定的结构有关,如光栅格式和矢量格式,而且与特定的厂家有关。 为了能够进行空间数据的分析和处理, 需要首先对这些异构的数据进行清洗、变换和集成,以清晰一致的格式存放在数据仓库中,然后可以调用相应的数据挖掘算法获取有用的知识。 空间数据仓库已成为联机数据分析处理和数据挖掘必不可缺的平台。利用空间数据仓库技术, 可以对异构的各类信息进行过滤、集中和综合,完成水情信息采集、工情信息采集、防汛抗旱信息等水利工程信息的自动接收、处理等功能,在此基础上可以进行汛情分析、暴雨洪水预报、调度、灾情评估以及旱情预测等知识发现功能。
空间数据仓库、OLAP(On-Line Analytic Process,联机分析处理)和 OLAM(On-Line Analytic Mining,联机分析挖掘)的实现基于多维数据模型,这种模型围绕中心主题组织数据,将数据看作数据立方体的形式。 数据立方体允许从多维对数据建模和观察,它由维和事实来定义。 数据仓库有星型模式、雪花型模式或事实星座型模式。 在这 3 种结构中,星型模式提供了简洁而有组织的仓库结构,便于进行 OLAP 和 OLAM 操作,所以是空间数据仓库建模的好选择。相比于传统的数据立方体,空间数据立方体中存在 3种类型的维:非空间维、空间到非空间维和空间到空间维;有两种不同的度量:数值度量和空间度量 。
4 水利工程
GIS 系统与数据挖掘系统结合的方式水利工程的建设和管理与其所在地的地形、地质、社会、经济以及河流的水文等空间要素有关,而 GIS 善于处理和分析空间信息,因此大多水利工程在信息系统中采用了 GIS 技术。 GIS 是空间数据库发展的主体。 GIS 中含有大量的空间和属性数据,有着比一般关系数据库和事务数据库更加丰富和复杂的语义信息, 隐藏着丰富的知识。
空间数据挖掘和知识发现技术,一方面可使 GIS 查询和分析技术提高到发现知识的新阶段,另一方面从中发现的知识可构成知识库用于建立智能化的 GIS 系统,同时也将促进 3S(GIS/RS/GPS)的智能化集成,因此很有必要探讨GIS 系统与数据挖掘系统的结合方式。 当数据挖掘系统工作在一个需要与其他信息系统成分通信的环境下,可以采用不耦合、松散耦合、半紧密耦合和紧密耦合 4 种方案。 不耦合方案虽然简单,但缺点不少,是一种非常糟糕的设计。 雷宝龙和李春梅提出了 GIS 与空间数据挖掘集成的3 种模式:松散耦合式、嵌入式和混合型空间模型法。在此基础上对上述 3 种模式进行了改进,以适合于水利工程 GIS 系统和空间数据挖掘系统的集成。
4.1 嵌入式
嵌入式是将数据挖掘系统融入到 GIS 中,也就是说系统既是一个 GIS 系统,又是一个数据挖掘系统。 嵌入式的优点是可以充分利用 GIS 系统所提供的空间数据处理和分析功能来开发数据挖掘系统, 减少了开发的工作量,降低了开发的难度;其缺点是数据挖掘功能被限制在特定的GIS 系统中,难以移植到其他的 GIS 系统上,而且这种方式会因为考虑到一种用户的需求,而限制另一部分用户的需求,从而使系统功能的开发受到限制。
4.2 松散耦合式
在松散耦合式下,数据挖掘系统和 GIS 系统实际上是两个独立的系统,数据挖掘系统从 GIS 中获取空间数据和属性数据,经过清洗、过滤和变换后存入自身的数据库或数据仓库中,数据挖掘所进行的其他工作与 GIS 系统没有任何联系。 这种模式的优点是数据挖掘系统不依赖于特殊的 GIS 系统,可以开发出独立的、相对通用的空间数据挖掘系统;缺点是在数据挖掘系统中要融入复杂的空间数据的处理,系统开发的难度很高。 4.3 紧密耦合式紧密耦合式克服了嵌入式和松散耦合式的缺点,既充分利用了原有 GIS 的处理空间数据的强大功能,降低了开发的难度, 又不受制于原有 GIS 系统的用户需求的制约,具有较大的灵活性,提供了相对独立的数据挖掘功能。 其缺点是和原来系统联系密切,开发的数据挖掘系统往往依赖于 GIS 系统。
在这 3 种结合方式中, 紧密耦合式有着明显的优点,是建立水利工程数据挖掘系统优先考虑的方式。
5 水利工程数据挖掘系统模型
文献介绍了国外几个相对比较成熟的空间数据挖掘系统:GeoMiner、MultiMediaMiner、SKICAT 等, 然后提出了作者领导的空间数据挖掘团队研究和开发的两种空间数据挖掘原形系统 GISDBMiner 和 RSImageMiner,并提出了 GIS 空间数据挖掘系统的体系结构。 文献介绍了现有的数据挖掘模型:OLAM 模型和影响域模型,以及 GeoMiner 原型系统的体系结构,最后提出了一个基于空间立方体的数据挖掘模型。 文献提到了 Han 提出的通用数据采掘原型 DBLEARN/DBMINER、Holsheimer 等人提出的并行体系结构,以及 Matheus 等人提出的多组件体系结构,并重点介绍了 Matheus 等人的多组件体系结构。水利工程管理决策大多是复杂的非结构化决策,需要进行探查性或查询驱动型的数据挖掘,以方便不同的决策者和专家从不同的领域或角度进行数据探查和分析。 一般情况下,在挖掘过程中需要进行人机的多次对话,然后结合人类专家的隐性知识,才能够发现有价值的知识。 因此自动化的挖掘方法不适合于水利工程数据挖掘。
模型分为 4 层,分别为数据存储层、多维数据库与数据仓库层、OLAP/OLAM 层、用户界面层。 第一层数据存储层的数据主要来源于水利工程数据库和相关的异构数据库,元数据用于指导数据的清理、过滤和集成,是构建水利工程数据仓库重要的技术手段。 第一层的数据经过变换和集成后,存储到数据仓库和多维数据库中,它们是实现第三层 OLAP/OLAM 分析所需要的重要的数据源。 该模型的核心是 OLAP/OLAM, 它们是支持探查性知识发现的核心技术。 第四层是用户界面层,用来帮助用户实现基于约束的挖掘查询,并将挖掘结果显示给用户。
6 空间挖掘可以采用的方法与发现的知识类型
数据挖掘在水利工程管理上的应用,不仅可以建设智能型的 GIS 系统,促进遥感技术和 GIS 技术的深入应用,还可以从数据中发现潜在的、有价值的知识或规则,用于指导水利工程的建设和管理。 一般来说,传统的数据挖掘方法如统计、分类、聚类等都可用于空间数据挖掘,但我们不能简单地把这些方法直接应用在空间数据的挖掘上 。一方面, 因为空间数据除了具备一般非空间数据的特征外,还具备拓扑、方位、距离等空间特征;另一方面,传统的数据挖掘算法一般假定数据对象统计不相关、相邻的数据对象是独立产生的,而空间数据的相邻对象间存在着关联和相互影响,因此需要对原有的方法进行改进,使得数据挖掘方法适合于地理空间数据的挖掘。 在空间数据挖掘与知识发现中可采用的方法主要有:统计方法、归纳方法、聚类方法、空间分析方法、探测性的数据分析、Rough 集方法、云理论、图像分析和模式识别等。 能发现的知识类型有:(1)普遍的几何知识,如计算和统计出空间目标几何特征量的最小值、最大值、均值、方差、众数等;(2)空间分布规律,如机井、水库的分布规律。 能发现的规则有:(1)空间关联规则,如地下水与降雨量的关系,河水质量与污染企业分布的关系;(2)空间的聚类规则;(3)空间演变规则,如水库泥沙淤积的演变规律, 河道周围生态的演变规律。需要注意的是,为了便于理解空间数据、发现空间联系、发现空间数据与非空间数据之间的关系,应重视可视化的方法在水利工程数据挖掘过程和挖掘结果的使用。
7 结 语
利用空间数据挖掘技术,对具有空间特征的水利工程数据进行分析,能够发现潜在有价值的知识,利用这些知识,能够降低工程管理的成本,有效利用建设和维护资金,更好地发挥水利工程的效益,为水利工程的管理决策提供依据。 要实现数据挖掘技术在水利工程中的应用,必须研究和解决数据仓库和数据立方体的应用、数据挖掘与 GIS集成和水利工程数据挖掘系统模型 3 个核心问题。 本文对这 3 个问题进行了探讨,认为数据仓库是水利工程数据挖掘的基础, 宜采用紧密耦合式结构与 GIS 系统进行集成,在挖掘模型上可以采用基于 OLAP 和 OLAM 的 4 层框架。
篇12:网络安全技术分析与研究论文
网络安全技术分析与研究论文
摘要:“互联网+”是指以Internet为中心,将各种网络及服务连成一体化的信息化时代,从而达到万物互联的目的。针对“互联网+”的一体化、多样化及异构化等特征,文章从网络的不同层次提出了网络的安全问题,然后针对这些安全问题进行相关分析与研究并给出了相应安全建议。实践证明本文提出的相关观点对构建“互联网+”时代下的网络安全具有一定的应用价值。
关键词:互联网+;网络安全;网络体系结构
“互联网+”顾名思义是以互联网为中心所构成的一个信息化的世界[1-3]。例如,目前的在线支付、远程智能家具控制以及移动OA等,都是以Internet为中心而构建起来的信息化服务。自Internet以全球互联网络问世以来,其在计算机网络世界已经达到了无可替代的地位;人们所构建的网络若需与外界通信,则必需首先考虑是否连入“外网”,而这里的“外网”一般所指即为互联网;另外,特别是跨区域甚至是跨国企业,若要将各子公司的信息化构成一个内网,假设在没有互联网的情况下,该企业必须专线架构基础设施来完成,而现在企业只需借助互联网基础设施采用相关安全技术和隧道技术等就可以实现它。随着物联网技术和移动互联网技术的飞速发展,“互联网+”中“+”的含义越来越明显,使得人类真正进入信息化时代,从而使得各项生活活动都以互联网为中心而完成,诸如上述在线支付等。“互联网+”的时代改变了人们的生活方式,使得人们的生活越来越便利,同时,它也给人们带来相关安全隐患,在这个时代下的网络安全问题显得越来越重要[4-5]。这具体表现在,网络的一体化使得网络安全问题以互联网为中心而衍生开来;网络的多样化和异构化使得网络安全问题也变得复杂和多样化。例如,在移动互联网发展的今天,人们都以智能终端移动设备连入互联网进行相关活动,这就使得网络的管理变得复杂而困难。为解决“互联网+”时代下的网络安全问题,本文首先分析其特征,然后引出用户的需求,再从网络安全的不同层次来进行分析,以提出解决相关安全问题的方案。
1“互联网+”的相关特征
“互联网+”的时代是一个信息化大统一的时代,它是以互联网为基本网络架构设施,采用不同种网络计算技术将人类的生活真正统一到信息化中去,具体有如下特征。
1.1以互联网为中心
“互联网+”是以Internet为基础网络架构,因此,它必然以互联网为中心而存在。例如,目前流行的智能家具远程控制就是首先采用无线传感器将各家具连成一个局域网络,然后通过该网络的网关收发数据并传入互联网;再次,在用户的智能终端设备启用相应的APP客户端,然后通过此客户端对智能家具进行控制。因此,互联网是数据传输的中心,其安全问题也必然是“互联网+”网络的关键点之一。Internet以TCP/IP协议簇为基础,由互联网层的IP协议将异种的各子网连成一个统一的互联网;另外,IP协议还负责将数据从一个网络路由到另一个网络,但IP只是尽力将数据进行传递,而对数据的可靠性传递不给予保证。因此,互联网通过TCP来实现端到端的可靠传输。
1.2用户需求的多样性
在当前的信息化时代,人们的各项活动都通过互联网来实现。例如,人们为实现工业生产的协同工作及信息化共享等需要网络服务;人们的日常生活活动,如在线办公、在线购物等也需要网络服务;再有,人们的基本生活需求,如智慧城市、智能家具、人工智能等相关产品都需要网络服务。
1.3万物互联的特征越来越明显
随着物联网技术从概念提出到现在的万物互联的实现,使得物联网的概念不再局限于一个实物相连概念,而上升到一个哲学上的高度;即万物互联使得信息化时代的中心即为信息,而信息相连的中心则为互联网。目前的大数据、物联网及云计算等网络计算的发展使得万物互联成为现实。
1.4移动互联网技术解决了终端网络接入的最后束缚
移动智能终端的飞速发展使得连入网络的最后束缚得到了解决,目前,人们可以通过智能手机等智能终端便捷地接入互联网而进行各项活动,特别是在线支付宝或微信支付,使得我国在支付方式上走在了世界的前列,从而改变了人们的生活方式。毫不夸张地说,移动互联网技术的实现使得信息化技术的普及成为现实。目前,没有任何计算机知识基础的人都能使用相关终端设备来获取信息而为工作、学习和生活服务。从上述“互联网+”信息时代的四大特征来看,目前,我们已经进入了一个统一化、多样化及异构化和复杂化的信息化时代,从而使得各行各业都离不开信息化技术;在这个大背景下,网络的安全问题也必然成为一个不可忽视的问题。例如,如果人们在进行在线支付时,没有相关安全保证,试问,还有谁愿意使用这样的支付方式。当然,随着网络的发展,网络的安全问题也得到了相应的保证。在下一小节,笔者将分析说明目前网络安全技术发展的相关现状及挑战,并给出相关解决方案。
2“互联网+”时代下的网络安全技术
由于“互联网+”的信息化时代人们对信息的依赖已经到达了如依赖水和电的程度,因此,网络信息的安全问题也必然成为人们最关心的问题之一。在本小节,笔者从数据安全、网络安全及“互联网+”的相关特征下的安全问题等方面来分析“互联网+”下的安全问题。
2.1数据安全
数据是信息的表现形式,计算机处理的数据是以二进制表示的机器编码,不管是文本、声音还是图像、动画等,最终都以二进制数据编码后由计算机存储或处理。因此,二进制数据的安全问题必然是网络安全中最基本的安全问题之一。为了实现数据的安全,人们一般采用密码技术与计算机结合而形成现代密码技术来完成此任务。所谓密码技术,即将数据通过相关技术手段使之成为不可识别的内容,若合法用户则需将这些不可识别的内容还原为原有数据后才能使用,而这些过程中需要的一项关键因素即为密钥。采用密码技术可从数据的底层保证数据机密性、完整性和可用性。
2.2网络安全
“互联网+”下的.网络安全即为互联网的安全,目前,在Internet网络的各个层次都建立起了相应的安全机制。在互联网层的IP协议的基础之上,采用了IPSec协议来实现IP层的安全;在传输层,运用了SSL和TLS等协议来实现端到端的网络安全;在应用层,各应用协议也有相应的安全协议相支撑,例如超文本传输协议即有HTTPS来实现万维网的应用安全。
2.3子网层安全
在互联网的分层网络体系结构中,子网层位于网络的最底层,主要表现为各物理网络的构成。目前在“互联网+”的网络时代,子网层的多样性、异构性和复杂性使得万物互联的信息化时代成为现实。同样也因为子网层的这些特性,使得其安全问题变得更为复杂。首先,现在连入互联网络的物理网络不再是单一的有线局域网络,它可以是有线局域网、无线局域网,也可以是以任何形式的智能物理设备组成的自组织网络;其次,移动通信技术和无线网络技术使得各种不同物理设备随意自组织加入互联网成为现实。因此,从子网层入手来解决安全问题,已经是“互联网+”时代下的重要网络安全问题之一。
3“互联网+”时代下的网络安全的几点建议
网络安全的相关问题从TCP/IP协议簇的上层结构来看,已经拥有很成熟的网络安全技术,这是因为随着互联网的发展,人们为了满足其安全需求,其安全技术的发展也日趋成熟。而随着移动通信技术和无线技术的不断发展,使得移动互联网技术成为“互联网+”时代的前动力。因此,终端用户从其子网层随意自组织进入互联网络,这使得其安全问题越来越严峻。下面笔者针对“互联网+”的相关特征,从子网层入手,提出几点与“互联网+”网络安全相关的建议。
3.1接入网安全
在底层终端用户连入互联网之前,必须选择相关接入网络来进入互联网。例如,可能通过有线将设备连入物理网络,也可以通过无线局域网或移动流量数据等连入网络。为保证接入网的安全,从网络的角度而言,要阻止不法用户接入网络最好的办法就是进行相应的身份认证,例如,在无线局域网络中就有WEP和WPA等相关协议来完成相关认证。另外,从用户的角度而言,不随意连入来历不明的网络热点,以使自己不暴露在不法人员的网络中而得到相应安全保护。
3.2加强终端用户安全意识
用户终端一旦连入互联网后,网络数据的表现形式及传输方式即不为其所知和所关心;此外,用户也因没有专业的网络知识而无法解决网络下层数据处理问题。因此,网络的底层对终端用户而言都是透明的,从而使得用户也不需要去关心下层安全问题,把这些问题都交给网络安全机制去处理。而对于终端用户主要是针对网络应用方面的安全需自身处理,使得网络信息用户的层次是安全的,这需要用户增强安全意识且制定相应安全策略。
3.3用户安全策略
“互联网+”时代下,信息的使用者网络终端用户需制定相应安全策略以确保自身的信息安全,笔者依据“互联网+”的特性提出如下安全策略。(1)口令安全。用户在进行网络应用时,一般都采用口令进行身份认证,因此,口令的安全即为用户网络安全的第一要素。(2)访问安全。用户在运用“互联网+”获取信息时,访问的安全尤为重要,用户应不随意访问来历不明的信息系统。(3)支付安全。用户在运用网络在线支付时,不可采用“一篮子工程”,即为了支付的便捷将各支付系统与网上银行随意绑定;可采用“即存即用”原则来确保将损失降到最低,即需要支付多少,提前存入多少资金,即使账号有失也不会带来太大损失。(4)个人隐私信息安全。用户不可随意将个人隐私信息暴露在各信息系统,应采用相关安全机制来保护个人隐私信息。(5)防网络陷阱安全。在信息一体化的时代,不法分子也通过信息手段来制造网络陷阱骗取财物,例如黑网贷、等,其实防网络陷阱只需自身安全意识强且不贪小便宜即可防范此安全问题。
4结语
本文首先阐述了“互联网+”时代的基本特征,然后从网络的各个层次分析了网络安全机制,最后从用户接入网络和用户终端层面上重点阐述在信息一体化时代下网络安全的相关建议。下一步的工作是将相关安全策略具体化以形成网络安全模型。
[参考文献]
[1]肖宏,马彪.“互联网+”时代学术期刊的作用及发展前景[J].中国科技期刊研究,(10):1046-1053.
[2]赵若瑜.“互联网+”电子信息技术发展研究[J].科技与创新,(1):151-152.
[3]欧阳日辉.从“+互联网”到“互联网+”—技术革命如何孕育新型经济社会形态[J].人民论坛(学术前沿),2015(10):25-38.
[4]田铁红,张伟,石春达,等.“互联网+”环境下的网络平台信息安全[J].信息通信技术,(6):5-10.
[5]宁家骏.推进“互联网+”离不开“互联网+”安全[N].中国建设报,2015-08-12(007).
篇13:数据挖掘技术下战略管理会计探究论文
数据挖掘技术下战略管理会计探究论文
摘要:随着信息技术的快速发展,企业要保持竞争优势必须对企业发展过程中的内外部信息全面及时的掌握,并制定出全面、准确的竞争战略,而其实现需建立在以数据挖掘为基础的战略管理会计基础上。本文以此为研究对象,对基于数据挖掘的战略管理会计体系框架构建和实施等问题展开研究,为挖掘现代企业的竞争优势作出努力。
关键词:数据挖掘;战略管理会计;问题
在信息技术不断深化和推广过程中,战略管理会计的重要性逐渐凸显。但信息作为重要的企业战略资源,其及时性、可靠性、收集处理、管理方式等方面都发挥着显着的变化,使企业战略会计管理受到严峻的挑战。基于数据挖掘的战略管理会计可提升其对环境的适应能力,实现企业的竞争优势,所以对其展开研究现实意义显着。
一、基于数据挖掘的战略管理会计体系框架构建
基于数据挖掘的战略管理会计的实施要以战略管理及其基本原理为指导,要实现数据支持和经验判断的充分结合,要在人机结合的同时坚持以人为主,顺应企业的组织流程和文化内涵,以此实现企业对相关信息的充分利用,使其对数据信息的理解更加全面,进而提升战略管理会计在企业决策中的相关性,提升企业整体的竞争实力。现阶段通常将大数据、云计算、商务智能等信息环境下企业信息化实践中数据挖掘理论和技术相关的战略管理会计活动称为基于数据挖掘的战略管理会计,所以其体系框架必然要涵盖基础理论与方法、数据存储、信息分析与整合、知识发现、战略管理五个层次,结合战略管理相关理论和企业总体、业务、职能等方面的战略目标,实现整合、挖掘、分析不同数据源的数据,进而通过数据挖掘提升企业的战略决策和整体运营的水平,在此过程中数据挖掘主要发生于信息分析与整合和知识发现两层结构中,可见基于数据挖掘的战略管理会计体系是实现将数据转化为信息、知识、智慧、价值的循序渐进的过程。
二、基于数据挖掘的`战略管理会计体系框架实施分析
此过程的实现需要经过以下流程:首先,要以战略管理会计的基本要求为依据对分析问题进行定位,对需要的内外部信息进行判断。现阶段大部分企业通过向管理者和员工组织调查的方式进行确定,保证搜集信息的系统化,在此过程中要求企业管理者对分析需求的提出和过滤有较强的能力,使分析的效率和效果得到保证。其次,将企业经营过程中相关的内部外部信息利用各种数据收集系统输入企业数据库,使企业内部经营管理信息、企业宏观环境分析、产业分析、竞争市场分析等通过信息管理系统可以得到准确的反映,在清洗、转化、集成等数据处理后将相关数据输入数据仓库,为企业数据挖掘提供支持。再次,结合战略管理会计相关理论方法,如战略成本管理、战略综合业绩评价等,实现信息资源向决策知识的转变,为数据挖掘主题、数据理解、模型选择、评价分析结果等方面提供思路和指导,使数据分析的结果得到不断优化,而且在人机反馈的过程中战略管理会计相关工具可得到针对性的优化。然后,利用数据挖掘信息服务的分支系统以各种形式定期向相关管理者提供数据挖掘结果,并结合不同员工的权限进行针对性的安全设定,保证企业的战略信息安全,因此企业不同职位的员工都可以结合与其职位相对应的数据挖掘结果进行自我管理与提升,进而提升企业整体的运营效果。
可见基于数据挖掘的战略管理会计的实现需要高层管理者的支持,以此保证数据分析和收集的全面性和及时性;需要全体员工的积极参与,基于数据挖掘的战略管理会计的作用需要结合组织管理实现,而员工是组织管理的主要对象;需要安全高效的数据库管理系统作支持,使企业数据系统化分析、安全可靠应用得到保证;需要具有较高专业能力的会计人员参与,使蕴藏在数据挖掘中的相关关系得到发现和应用。
三、基于数据挖掘的战略管理会计的作用
在企业竞争环境分析、危机预警等方面基于数据挖掘的战略管理会计发挥着不同的作用,在竞争环境分析中通过定义问题、信息源确定、数据搜集与整理、输入数据存储系统、数据挖掘、结果分析与表达等环节,可以使企业的应变能力得到提升,使竞争环境得到实时的监控,而且将企业的管理落实到企业内部员工个体中,极大的提升企业对环境的适应能力;在危机预警方面,利用业务信息系统和环境监测系统,通过提出预警需求,确定信息源、搜集加工资料、数据挖掘、获取预警报告,进行预警反馈等流程,有利于企业构建建立在数据挖掘基础上的财务预警模型,全面生产经营和外部环境预警分析、实现企业经营过程中的信用风险分析和客户欺诈预警,可见其有利于减少企业经营过程中的风险,使企业发展的持续性和稳定性更有保证。战略管理会计是企业为实现长久发展而探索的成果,随着信息科技的发展,信息的规模、可靠性等方面都发生较大的变化,这要求战略管理会计要加大数据挖掘的能力,所以基于数据挖掘的战略管理会计是现代企业发展的必然选择。
四、结束语
通过上述分析可以发现,基于数据挖掘的战略管理会计是企业在信息科技不断发展过程中为实现竞争优势的必然选择,其有利于企业在大数据中准确获取并应用有利信息,挖掘自身优势,制定正确的发展战略,所以基于数据挖掘的战略管理会计应受到现代企业的高度重视。
参考文献:
[1]孟岩,武文龙。数据挖掘在战略管理会计中的应用--以AB公司为实例[J].会计之友(下旬刊),2010,06:54-57
[2]蒋尧明。对战略管理会计若干重要问题研究[N].江西财经大学学报,2009,01:56-61
[3]翟坤。基于数据挖掘的成本管理方法研究[D].大连:大连理工大学,2012
更多推荐
数据挖掘技术在会计管理与分析的性研究分析论文
发布评论