a-b的转置是(A±B)^T=A^T±B^T。证明(A+B)^T=A^T+B^T(其中A^T与B^T分别表示为矩阵A的转置和矩阵B的转置):设A=(aij),B=(bij)、则(A+B)^T=(aij+bij)^T=(aji+bji)=(aji)+(bji)=A^T+B^T。
更多推荐
a-b的转置
a-b的转置是(A±B)^T=A^T±B^T。证明(A+B)^T=A^T+B^T(其中A^T与B^T分别表示为矩阵A的转置和矩阵B的转置):设A=(aij),B=(bij)、则(A+B)^T=(aij+bij)^T=(aji+bji)=(aji)+(bji)=A^T+B^T。
更多推荐
a-b的转置
发布评论